Graph network classification(As a beginner, continue to update)

Posted ann21

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Graph network classification(As a beginner, continue to update)相关的知识,希望对你有一定的参考价值。

Data arrangement

1.Reference Webs

http://nlp.csai.tsinghua.edu.cn/~tcc/

https://blog.csdn.net/a609640147/article/details/89562262

https://blog.csdn.net/liudingbobo/article/details/83039233

https://blog.csdn.net/lzglzj20100700/article/details/84965339

https://blog.csdn.net/weixin_39373480/article/details/89402879

https://blog.csdn.net/r1254/article/details/88343349

https://blog.csdn.net/qq_41727666/article/details/84587027

https://blog.csdn.net/weixin_42137700/article/details/87159371

https://blog.csdn.net/melon0014/article/details/82527750

https://blog.csdn.net/u014281392/article/details/90174664

https://blog.csdn.net/DSTJWJW/article/details/83896312

https://blog.csdn.net/qq_34911465/article/details/88524599

http://i.dataguru.cn/mportal.php?mod=view&aid=14801

https://mp.weixin.qq.com/s?src=11&timestamp=1561431089&ver=1689&signature=EMOEnQ2reNbnmTwed8JVBNlMfbPiT3kg79ZslP0gMBNTyn20BQIsAL-vW8FG3aPfjhAr2eZ8G*WYkOdonzgEixDKstBpumlm8wKbCbWtd7RKgrSBkmWLVxfJ5FJeDfNx&new=1

2.Reference Papers

https://www.cs.purdue.edu/mlg2011/papers/paper_1.pdf

https://link.springer.com/content/pdf/10.1007%2F978-1-4419-6045-0.pdf

https://link.springer.com/content/pdf/10.1007%2F978-1-4419-6045-0.pdf

https://www.cse.wustl.edu/~muhan/papers/AAAI_2018_DGCNN.pdf

http://ryanrossi.com/pubs/KDD18-graph-attention-model.pdf

https://www.cs.uoregon.edu/Reports/AREA-201706-Riazi.pdf

https://paperswithcode.com/task/graph-classification

https://www.kdd.org/kdd2018/accepted-papers/view/graph-classification-using-structural-attention

https://www.csc2.ncsu.edu/faculty/nfsamato/practical-graph-mining-with-R/slides/pdf/Classification.pdf

3.Others

Semi-Supervised Classification with Graph Convolutional Networks

Graph Partition Neural Networks for Semi-Supervised Classification

FastGCN: Fast Learning with Graph Convolutional Networks via Importance Sampling

Generating Classification Weights With GNN Denoising Autoencoders for Few-Shot Learning

Link Prediction Based on Graph Neural Networks

Hierarchical Graph Representation Learning with Differentiable Pooling

还可以到CVPR,ICLR,NIPS,这几个会议上去找找(待找)

以上是关于Graph network classification(As a beginner, continue to update)的主要内容,如果未能解决你的问题,请参考以下文章

如何理解 Graph Convolutional Network(GCN)

论文阅读|浅读GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training

论文阅读|浅读GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training

pytorch 笔记: 复现论文 Stochastic Weight Completion for Road Networks using Graph Convolutional Networks(代

Graph Neural Networks (GNN):Graph Embedding (DeepWalk, Line, Node2Vec)

Graph Neural Networks (GNN):Graph Embedding (DeepWalk, Line, Node2Vec)