51nod1776 路径计数
Posted ivorysi
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了51nod1776 路径计数相关的知识,希望对你有一定的参考价值。
【51nod】1776 路径计数
我们先把前两种数给排好,排好之后会有\(a + b + 1\)个空隙可以填数,我们计算有\(k\)个空隙两端都是相同字母的方案数
可以用枚举把第二种数分成几段插进去来算,设这个方案数为\(f[k]\)
然后对于一种有\(k\)个空隙的方案数,枚举剩下的\(a + b + 1 - k\)个空隙填了\(h\)个
然后计算把\(C\)和\(D\)分成\(k + h\)段的方案数就好了,记为\(g[k + h]\)
那么如何计算\(g[i]\)呢
一段要么是偶数,\(C\)和\(D\)个数相等,一段要么是奇数,\(C\)多或者\(D\)多
对于一个\(i\),强制认为\(C\)多的有\(j\)个,那么可以求出\(D\)多的是\(k\)个,剩下的必须两两配对,把剩下的\(i - j - k\),填成\(DC\)或者\(CD\),有两种方案
然后剩下的\(CD\)的对子,扔到\(i\)个区间中排列方法是唯一的,只要计算切成\(i\)段每段可以为空的方案数是多少就行了,是个组合数
#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define mp make_pair
#define pb push_back
#define space putchar(' ')
#define enter putchar('\n')
#define eps 1e-10
#define ba 47
#define MAXN 1000005
//#define ivorysi
using namespace std;
typedef long long int64;
typedef unsigned int u32;
typedef double db;
template<class T>
void read(T &res)
res = 0;T f = 1;char c = getchar();
while(c < '0' || c > '9')
if(c == '-') f = -1;
c = getchar();
while(c >= '0' && c <= '9')
res = res * 10 +c - '0';
c = getchar();
res *= f;
template<class T>
void out(T x)
if(x < 0) x = -x;putchar('-');
if(x >= 10)
out(x / 10);
putchar('0' + x % 10);
const int MOD = 998244353;
int fac[10005],invfac[10005],f[5005],g[5005],pw[5005];
int a[5],N;
int inc(int a,int b)
return a + b >= MOD ? a + b - MOD : a + b;
int mul(int a,int b)
return 1LL * a * b % MOD;
void update(int &x,int y)
x = inc(x,y);
int fpow(int x,int c)
int res = 1,t = x;
while(c)
if(c & 1) res = mul(res,t);
t = mul(t,t);
c >>= 1;
return res;
int C(int n,int m)
if(n < m) return 0;
return mul(fac[n],mul(invfac[m],invfac[n - m]));
int main()
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
fac[0] = 1;
for(int i = 1 ; i <= 10000 ; ++i) fac[i] = mul(fac[i - 1],i);
invfac[10000] = fpow(fac[10000],MOD - 2);
for(int i = 9999 ; i >= 0 ; --i) invfac[i] = mul(invfac[i + 1],i + 1);
pw[0] = 1;
for(int i = 1 ; i <= 5000 ; ++i) pw[i] = mul(pw[i - 1],2);
while(scanf("%d%d%d%d",&a[0],&a[1],&a[2],&a[3]) != EOF)
N = a[0] + a[1] + a[2] + a[3];
if(!N) puts("1");continue;
memset(f,0,sizeof(f));
memset(g,0,sizeof(g));
for(int i = 1 ; i <= a[2] + a[3] ; ++i)
for(int j = 0 ; j <= min(i,a[2]) ; ++j)
if(a[3] < a[2] - j) continue;
int k = a[3] - (a[2] - j);
if(j + k > i) continue;
if(a[2] - j < i - j - k) continue;
int t = 1;
t = mul(t,C(i,j));t = mul(t,C(i - j,k));
t = mul(t,pw[i - j - k]);
int rem = a[2] - j - (i - j - k);
t = mul(t,C(rem + i - 1,i - 1));
update(g[i],t);
for(int i = 1 ; i <= a[1] ; ++i)
int t = C(a[1] - 1,i - 1);
for(int k = max(0,i - 2) ; k <= min(a[0] - 1,i) ; ++k)
int t0 = t;
t0 = mul(C(a[0] - 1,k),t0);t0 = mul(t0,C(2,i - k));
int p = a[0] - 1 - k + a[1] - i;
update(f[p],t0);
int ans = 0;
for(int i = 0 ; i <= a[0] + a[1] ; ++i)
if(!f[i]) continue;
for(int h = a[0] + a[1] + 1 - i ; h >= 0 ; --h)
int c = mul(f[i],g[i + h]);
c = mul(c,C(a[0] + a[1] + 1 - i,h));
update(ans,c);
out(ans);enter;
以上是关于51nod1776 路径计数的主要内容,如果未能解决你的问题,请参考以下文章