分布式锁----浅析redis实现

Posted ly570

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了分布式锁----浅析redis实现相关的知识,希望对你有一定的参考价值。

首先请先确认已经安装好了opencv3及以上版本。

#include <opencv2/opencv.hpp>
#include <iostream>
#include <string>
using namespace cv;
using namespace std;
1
2
3
4
5
存储
then

int main()

//创造一些要存的数据先
string words = "hello, my guys!";
float n = 3.1415926;
Mat m = Mat::eye(3, 3, CV_32F);
//开始创建存储器
FileStorage save("data.yml", FileStorage::WRITE);// 你也可以使用xml格式
save << "words" << words;
save << "number" << n;
save << "matrix" << m;
save.release();
//存储完毕
cout << "finish storing" << endl;
1
2
3
4
5
6
7
8
9
10
11
12
13
14
加载
//加载数据,类似Python字典的用法,创建加载器
FileStorage load("data.yml", FileStorage::READ);

float nn;
Mat mm;
string ww;
load["words"] >> ww;
load["number"] >> nn;
load["matrix"] >> mm;
cout<< ww << endl << nn << endl << mm;
cout << endl << "That‘s the end";
load.release();

return 0;

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
完整代码
#include <opencv2/opencv.hpp>
#include <iostream>
#include <string>

using namespace cv;
using namespace std;

int main()

string words = "hello, my guys!";
float n = 3.1415926;
Mat m = Mat::eye(3, 3, CV_32F);
FileStorage save("data.yml", FileStorage::WRITE);
save << "words" << words;
save << "number" << n;
save << "matrix" << m;
save.release();
cout << "finish storing" << endl;

FileStorage load("data.yml", FileStorage::READ);

float nn;
Mat mm;
string ww;
load["words"] >> ww;
load["number"] >> nn;
load["matrix"] >> mm;
cout<< ww << endl << nn << endl << mm;
cout << endl << "That‘s the end";
load.release();

return 0;

---------------------
作者:你是天使放纵我的固执
来源:CSDN
原文:https://blog.csdn.net/qq_38063935/article/details/91611062
版权声明:本文为博主原创文章,转载请附上博文链接!

 

 

 

引言
大概两个月前小伙伴问我有没有基于redis实现过分布式锁,之前看redis的时候知道有一个RedLock算法可以实现分布式锁,我接触的分布式项目要么是github上开源学习的,要么是小伙伴们公司项目我们一起讨论问题涉及的,我自己公司的项目中没有实践分布式锁的地方也就没有仔细研究,向小伙伴推荐使用的是redisson实现的就是RedLock算法;当然有能力的还可以自己根据redis作者的RedLock算法描述去实现

插曲
关于RedLock算法的安全性有位大牛 Martin Kleppmann 产生了分歧 How to do distributed locking ;当然Redis作者 antirez 也做出了回应 Is Redlock safe?;当然这是神仙"打架",我们从中学习大牛分析的问题,从而规避即可。

浅析
加锁
redisson通过lua脚本来实现加锁和释放锁,使用lua脚本可以保证原子性

KEYS[1] 就是我们自己定义的 锁名
ARGV[2] 就是生成的锁id UUID+线程id
ARGV[1] 就是生存时间
if (redis.call(‘exists‘, KEYS[1]) == 0) then " +
"redis.call(‘hset‘, KEYS[1], ARGV[2], 1); " +
"redis.call(‘pexpire‘, KEYS[1], ARGV[1]); " +
"return nil; " +
"end; " +
"if (redis.call(‘hexists‘, KEYS[1], ARGV[2]) == 1) then " +
锁对应的value+1 熟悉AQS锁就会知道 这是锁重入
"redis.call(‘hincrby‘, KEYS[1], ARGV[2], 1); " +
"redis.call(‘pexpire‘, KEYS[1], ARGV[1]); " +
"return nil; " +
"end; " +
"return redis.call(‘pttl‘, KEYS[1]);
假设 现在线程a,b来请求锁,a先请求到,自定义锁名叫做MY_TEST_LOCK;
b来请求锁时,发现MY_TEST_LOCK 这个锁可以已经存在了,走第二个if;
如果不存在 将key 锁id 超时时间 设置到redis中,返回null表示获取到了锁
第二if判断这个锁名+锁id有没有存在, 如果存在 说明是重入了 就把value加1
返回null 表示获取到了锁
如果不存在返回MY_TEST_LOCK 这个锁的剩余时间,代码中b线程会while循环,
不停的尝试加锁
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
释放锁
释放锁
KEYS[1] 锁名 例如:MY_TEST_LOCK
KEYS[2] 通道名 当释放锁时发现锁不在redis中时使用
ARGV[1] 锁id
ARGV[2] 锁剩余时间
ARGV[3] 锁重入的值
如果锁不存在 说明已经释放过了 发布redis消息
"if (redis.call(‘exists‘, KEYS[1]) == 0) then " +
"redis.call(‘publish‘, KEYS[2], ARGV[1]); " +
"return 1; " +
"end;" +
如果锁对应得value 和redis中value不对应,说明该线程没有持有锁,不能释放
"if (redis.call(‘hexists‘, KEYS[1], ARGV[3]) == 0) then " +
"return nil;" +
"end; " +
锁对应的value -1 也就是释放锁
"local counter = redis.call(‘hincrby‘, KEYS[1], ARGV[3], -1); " +
如果锁value还是大于0 说明有重入情况 不删除
"if (counter > 0) then " +
"redis.call(‘pexpire‘, KEYS[1], ARGV[2]); " +
"return 0; " +
否则删除 发布redis消息
"else " +
"redis.call(‘del‘, KEYS[1]); " +
"redis.call(‘publish‘, KEYS[2], ARGV[1]); " +
"return 1; "+
"end; " +
"return nil;";
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
例子
这里只是很浅的说一下怎么用,然后解释一下源码里是怎么while循环获取锁的

哨兵模式
Config config = new Config();
config.useSentinelServers().addSentinelAddress(
"redis://172.29.3.245:26378","redis://172.29.3.245:26379", "redis://172.29.3.245:26380")
.setMasterName("mymaster")
.setPassword("a123456").setDatabase(0);

集群模式
Config config = new Config();
config.useClusterServers().addNodeAddress(
"redis://172.29.3.245:6375","redis://172.29.3.245:6376", "redis://172.29.3.245:6377",
"redis://172.29.3.245:6378","redis://172.29.3.245:6379", "redis://172.29.3.245:6380")
.setPassword("a123456").setScanInterval(5000);

单redis模式
Config config = new Config();
SingleServerConfig serverConfig = config.useSingleServer()
.setAddress("redis://127.0.0.1:6380")
.setTimeout(4000 * 10)
.setIdleConnectionTimeout(1000 * 60 * 10);

获取锁
public static final String MY_TEST_LOCK_NAME = "MY_TEST_LOCK";
RedissonClient redissonClient = Redisson.create(config);
RLock lock = redissonClient.getLock(USER_LOCK_NAME);
boolean getLock = false;
try
getLock = lock.tryLock(10, 5, TimeUnit.SECONDS);
if (getLock)
获取到锁后执行代码
System.out.println(Thread.currentThread().getName()+"线程 锁住");

catch (InterruptedException e)
//todo 处理异常
e.printStackTrace();
finally
lock.unlock();

单redis版 获取代码
/**
* waitTime 获取可以等待的时间
* leaseTime 过了这个时间之后 redis这个锁自动消失
*/
@Override
public boolean tryLock(long waitTime, long leaseTime, TimeUnit unit) throws InterruptedException
long time = unit.toMillis(waitTime);
long current = System.currentTimeMillis();
final long threadId = Thread.currentThread().getId();
先获取一下锁
Long ttl = tryAcquire(leaseTime, unit, threadId);
// lock acquired
如果获取到了锁 返回值就是null
if (ttl == null)
return true;


time -= (System.currentTimeMillis() - current);
if (time <= 0)
time <= 0表示超时了
acquireFailed(threadId);
return false;


current = System.currentTimeMillis();
final RFuture<RedissonLockEntry> subscribeFuture = subscribe(threadId);
if (!await(subscribeFuture, time, TimeUnit.MILLISECONDS))
if (!subscribeFuture.cancel(false))
subscribeFuture.addListener(new FutureListener<RedissonLockEntry>()
@Override
public void operationComplete(Future<RedissonLockEntry> future) throws Exception
if (subscribeFuture.isSuccess())
unsubscribe(subscribeFuture, threadId);


);

acquireFailed(threadId);
return false;

try
time -= (System.currentTimeMillis() - current);
if (time <= 0)
acquireFailed(threadId);
return false;

循环获取锁
while (true)
long currentTime = System.currentTimeMillis();
ttl = tryAcquire(leaseTime, unit, threadId);
// lock acquired
if (ttl == null)
return true;

time -= (System.currentTimeMillis() - currentTime);
if (time <= 0)
acquireFailed(threadId);
return false;

// waiting for message
currentTime = System.currentTimeMillis();
if (ttl >= 0 && ttl < time)
getEntry(threadId).getLatch().tryAcquire(ttl, TimeUnit.MILLISECONDS);
else
getEntry(threadId).getLatch().tryAcquire(time, TimeUnit.MILLISECONDS);

time -= (System.currentTimeMillis() - currentTime);
if (time <= 0)
acquireFailed(threadId);
return false;


finally
unsubscribe(subscribeFuture, threadId);

// return get(tryLockAsync(waitTime, leaseTime, unit));

多节点版获取锁 RedissonMultiLock
public boolean tryLock(long waitTime, long leaseTime, TimeUnit unit) throws InterruptedException
// try
// return tryLockAsync(waitTime, leaseTime, unit).get();
// catch (ExecutionException e)
// throw new IllegalStateException(e);
//
long newLeaseTime = -1;
if (leaseTime != -1)
newLeaseTime = unit.toMillis(waitTime)*2;


long time = System.currentTimeMillis();
long remainTime = -1;
if (waitTime != -1)
remainTime = unit.toMillis(waitTime);

long lockWaitTime = calcLockWaitTime(remainTime);

需要多少个redis 加锁成功 限制(N/2 + 1)
int failedLocksLimit = failedLocksLimit();
加锁成功集合
List<RLock> acquiredLocks = new ArrayList<RLock>(locks.size());
for (ListIterator<RLock> iterator = locks.listIterator(); iterator.hasNext();)
RLock lock = iterator.next();
boolean lockAcquired;
try
if (waitTime == -1 && leaseTime == -1)
lockAcquired = lock.tryLock();
else
long awaitTime = Math.min(lockWaitTime, remainTime);
lockAcquired = lock.tryLock(awaitTime, newLeaseTime, TimeUnit.MILLISECONDS);

catch (RedisResponseTimeoutException e)
unlockInner(Arrays.asList(lock));
lockAcquired = false;
catch (Exception e)
lockAcquired = false;


加锁成功 加入到成功集合
if (lockAcquired)
acquiredLocks.add(lock);
else
失败判断成功节点是否达到了要求
if (locks.size() - acquiredLocks.size() == failedLocksLimit())
break;

if (failedLocksLimit == 0)
unlockInner(acquiredLocks);
if (waitTime == -1 && leaseTime == -1)
return false;

failedLocksLimit = failedLocksLimit();
acquiredLocks.clear();
// reset iterator
while (iterator.hasPrevious())
iterator.previous();

else
failedLocksLimit--;



if (remainTime != -1)
remainTime -= (System.currentTimeMillis() - time);
time = System.currentTimeMillis();
if (remainTime <= 0)
unlockInner(acquiredLocks);
return false;


if (leaseTime != -1)
List<RFuture<Boolean>> futures = new ArrayList<RFuture<Boolean>>(acquiredLocks.size());
for (RLock rLock : acquiredLocks)
RFuture<Boolean> future = rLock.expireAsync(unit.toMillis(leaseTime), TimeUnit.MILLISECONDS);
futures.add(future);


for (RFuture<Boolean> rFuture : futures)
rFuture.syncUninterruptibly();



return true;

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
zookeeper实现分布式锁
在于小伙伴讨论Redis实现分布式锁的同时,我们在万能的github上发现了另一种zookeeper实现分布式锁的方式
zookeeper只是听过,没有用过,这里简单说下区别:
redis 分布式锁,需要自己不断去尝试获取锁,比较消耗性能,但是效率高
zk 分布式锁,获取不到锁,注册个监听器即可,不需要不断主动尝试获取锁,性能开销较小,但是健壮性强
另外一点就是,如果是 redis 获取锁的那个客户端 出现 bug 挂了,那么只能等待超时时间之后才能释放锁;而 zk 的话,因为创建的是临时 znode,只要客户端挂了,znode 就没了,此时就自动释放锁
---------------------

以上是关于分布式锁----浅析redis实现的主要内容,如果未能解决你的问题,请参考以下文章

浅析redis与zookeeper构建分布式锁的异同

Redis实现分布式锁与Zookeeper实现分布式锁区别

大厂面试题详解:如何用Redis实现分布式锁?

如何使用redis实现分布式锁功能?

浅析“分布式锁”的实现方式

redis 分布式锁