线程进程携程

Posted czz0508

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了线程进程携程相关的知识,希望对你有一定的参考价值。

进程: qq 要以一个整体的形式暴露给操作系统管理,里面包含对各种资源的调用,内存的管理,网络接口的调用等。。。对各种资源管理的集合 就可以成为 进程

线程: 是操作系统最小的调度单位, 是一串指令的集合(在python中同一时间执行的线程只有一个python多线程 不适合cpu密集操作型的任务,适合io操作密集型的任务

进程 要操作cpu , 必须要先创建一个线程 ,所有在同一个进程里的线程是共享同一块内存空间的

进程与线程的区别?
1.线程共享内存空间,进程的内存是独立的

2.同一个进程的线程之间可以直接交流,两个进程想通信,必须通过一个中间代理来实现

3.创建新线程很简单, 创建新进程需要对其父进程进行一次克隆

4.一个线程可以控制和操作同一进程里的其他线程,但是进程只能操作子进程

启动线程:(主线程不等子线程)程序在退出之前默认等待所有线程执行完毕

import threading
import time

def run(n):
    print("task ",n )
    time.sleep(2)
    print("task done",n)

start_time = time.time()
for i in range(50):
    t = threading.Thread(target=run,args=("t-%s" %i ,))
    t.start()

print("----------all threads has finished...")
print("cost:",time.time() - start_time)

启动线程:(主线程等待子线程执行完毕)

import threading
import time

def run(n):
    print("task ",n )
    time.sleep(2)
    print("task done",n)

start_time = time.time()
t_objs = [] #存线程实例
for i in range(50):
    t = threading.Thread(target=run,args=("t-%s" %i ,))
    t.start()
    t_objs.append(t) #为了不阻塞后面线程的启动,不在这里join,先放到一个列表里

for t in t_objs: #循环线程实例列表,等待所有线程执行完毕
    t.join()

print("----------all threads has finished...")
print("cost:",time.time() - start_time)

守护进程(即守护线程):以上主线程等待子线程执行完毕的过程中,虽然主线程没有等待子线程,但是在程序结束的时候默认等待所有的子线程结束。而守护进程在程序结束的时候是不需要等待守护进程执行结束的

 

import threading
import time

def run(n):
    print("task ",n )
    time.sleep(2)
    print("task done",n,threading.current_thread())

start_time = time.time()
for i in range(50):
    t = threading.Thread(target=run,args=("t-%s" %i ,))
    t.setDaemon(True) #把当前线程设置为守护线程
    t.start()

#print("----------all threads has finished...",threading.current_thread(),threading.active_count())
print("cost:",time.time() - start_time)

 

线程锁(也叫互斥锁)的应用:(防止多个线程对同一份资源的处理发生冲突, 上完锁之后程序变成了串行)python3程序自己上锁了

import threading
import time

def run(n):
    lock.acquire()
    global  num
    num +=1
    time.sleep(1)
    lock.release()

lock = threading.Lock()
num = 0
t_objs = [] #存线程实例
for i in range(50):
    t = threading.Thread(target=run,args=("t-%s" %i ,))
    t.start()
    t_objs.append(t) #为了不阻塞后面线程的启动,不在这里join,先放到一个列表里

for t in t_objs: #循环线程实例列表,等待所有线程执行完毕
    t.join()print("num:",num)

递归锁的应用:(如果出现锁中有锁就需要递归锁,如果不用递归锁而把锁的顺序混淆就会出现卡死现象)

import threading

def run1():
    print("grab the first part data")
    lock.acquire()
    global num
    num += 1
    lock.release()
    return num

def run2():
    print("grab the second part data")
    lock.acquire()
    global num2
    num2 += 1
    lock.release()
    return num2

def run3():
    lock.acquire()
    res = run1()
    print(--------between run1 and run2-----)
    res2 = run2()
    lock.release()
    print(res, res2)

num, num2 = 0, 0
lock = threading.RLock()
for i in range(1):
    t = threading.Thread(target=run3)
    t.start()

while threading.active_count() != 1:
    print(threading.active_count())
else:
    print(----all threads done---)
    print(num, num2)

信号量:(互斥锁 同时只允许一个线程更改数据,而Semaphore是同时允许一定数量的线程更改数据)

 

 

import threading, time

def run(n):
    semaphore.acquire()
    time.sleep(1)
    print("run the thread: %s\n" % n)
    semaphore.release()

if __name__ == __main__:
    semaphore = threading.BoundedSemaphore(5)  # 最多允许5个线程同时运行
    for i in range(22):
        t = threading.Thread(target=run, args=(i,))
        t.start()
while threading.active_count() != 1:
    pass  # print threading.active_count()
else:
    print(----all threads done---)

 

Event:(来实现两个或多个线程间的交互)

import time
import threading

event = threading.Event()

def lighter():
    count = 0
    event.set() #先设置绿灯
    while True:
        if count >5 and count < 10: #改成红灯
            event.clear() #把标志位清了
            print("\033[41;1mred light is on....\033[0m")
        elif count >10:
            event.set() #变绿灯
            count = 0
        else:
            print("\033[42;1mgreen light is on....\033[0m")
        time.sleep(1)
        count +=1

def car(name):
    while True:
        if event.is_set(): #代表绿灯
            print("[%s] running..."% name )
            time.sleep(1)
        else:
            print("[%s] sees red light , waiting...." %name)
            event.wait()
            print("\033[34;1m[%s] green light is on, start going...\033[0m" %name)

light = threading.Thread(target=lighter,)
light.start()

car1 = threading.Thread(target=car,args=("Tesla",))
car1.start()

queue队列:(作用是解耦和提高效率

import threading,time
import queue

q = queue.Queue(maxsize=10)

def Producer(name):
    count = 1
    while True:
        q.put("骨头%s" % count)
        print("生产了骨头",count)
        count +=1
        time.sleep(0.1)

def  Consumer(name):
    #while q.qsize()>0:
    while True:
        print("[%s] 取到[%s] 并且吃了它..." %(name, q.get()))
        time.sleep(1)

p = threading.Thread(target=Producer,args=("Alex",))
c = threading.Thread(target=Consumer,args=("ChengRonghua",))
c1 = threading.Thread(target=Consumer,args=("王森",))

p.start()
c.start()
c1.start()

多进程:用法上和多线程一样。每个子进程都是由父进程启动的。

import multiprocessing
import time

def run(name):
    time.sleep(2)
    print("hello", name)

if __name__ == "__main__":
    p = multiprocessing.Process(target=run, args=(bob, ))
    p.start()
    p.join()

父进程启动子进程:

from multiprocessing import Process
import os

def info(title):
    print(title)
    print(module name:, __name__)
    print(parent process:, os.getppid())
    print(process id:, os.getpid())
    print("\n\n")

def f(name):
    info(\033[31;1mcalled from child process function f\033[0m)
    print(hello, name)

if __name__ == __main__:
    info(\033[32;1mmain process line\033[0m)
    p = Process(target=f, args=(bob,))
    p.start()
    p.join()

进程间通讯(Queue):(以下这个例子中父进程的队列取到了子进程中队列的数,这其实是子进程从父进程中克隆了一份队列,然后这两个进程中的队列通过pickle进行互通)这只是实现了数据的传输

from multiprocessing import Process, Queue

def f(qq):
    qq.put([42, None, hello])

if __name__ == __main__:
    q = Queue()
    p = Process(target=f, args=(q,))
    p.start()
    print(q.get())

进程间通讯(Pipe):实现了数据的传递。

from multiprocessing import Process, Pipe

def f(conn):
    conn.send([42, None, hello from child])
    conn.send([42, None, hello from child2])
    print("from parent:",conn.recv())
    conn.close()

if __name__ == __main__:
    parent_conn, child_conn = Pipe()
    p = Process(target=f, args=(child_conn,))
    p.start()
    print(parent_conn.recv())  # prints "[42, None, ‘hello‘]"
    print(parent_conn.recv())  # prints "[42, None, ‘hello‘]"
    parent_conn.send("张洋可好") # prints "[42, None, ‘hello‘]"
    p.join()

进程间通讯(Manager):实现了进程间数据的共享和传输。

from multiprocessing import Process, Manager
import os
def f(d, l):
    d[os.getpid()] =os.getpid()
    l.append(os.getpid())
    print(l)

if __name__ == __main__:
    with Manager() as manager:
        d = manager.dict() #生成一个字典,可在多个进程间共享和传递

        l = manager.list(range(5))#生成一个列表,可在多个进程间共享和传递
        p_list = []
        for i in range(10):
            p = Process(target=f, args=(d, l))
            p.start()
            p_list.append(p)
        for res in p_list: #等待结果
            res.join()

        print(d)
        print(l)

 进程锁:虽然进程间的数据是相互独立的,但是他们在打印的时候需要占用同一块屏幕,所以需要锁来保证打印不会混乱。

from multiprocessing import Process, Lock

def f(l, i):
    l.acquire()
    print(hello world, i)
    l.release()

if __name__ == __main__:
    lock = Lock()
    for num in range(100):
        Process(target=f, args=(lock, num)).start()

进程池:同一时间由多少进程在运行。以下的回调函数是主进程调用的

from  multiprocessing import Process, Pool
import time
import os

def Foo(i):
    time.sleep(2)
    print("in process",os.getpid())
    return i + 100

def Bar(arg):
    print(-->exec done:, arg,os.getpid())

if __name__ == __main__:
    pool = Pool(processes=3) #允许进程池同时放入5个进程
    print("主进程",os.getpid())
    for i in range(10):
        pool.apply_async(func=Foo, args=(i,), callback=Bar) #callback=回调
        #pool.apply(func=Foo, args=(i,)) #串行
        #pool.apply_async(func=Foo, args=(i,)) #并行
    print(end)
    pool.close()
    pool.join() #进程池中进程执行完毕后再关闭,如果注释,那么程序直接关闭。.join()

 协程:协程是一种用户态的轻量级线程。(cpu都不知道它的存在)就是在单线程中,适合高并发处理。但不能用于多核

yield实现简单的携程:

import timedef consumer(name):
    print("--->starting eating baozi...")
    while True:
        new_baozi = yield
        print("[%s] is eating baozi %s" % (name, new_baozi))

def producer():
    r = con.__next__()
    r = con2.__next__()
    n = 0
    while n < 5:
        n += 1
        con.send(n)
        con2.send(n)
        time.sleep(1)
        print("\033[32;1m[producer]\033[0m is making baozi %s" % n)

if __name__ == __main__:
    con = consumer("c1")
    con2 = consumer("c2")
    p = producer()

greenlet携程:对携程进行了封装,需要手动进行切换

from greenlet import greenlet
def test1():
    print(12)
    gr2.switch()
    print(34)
    gr2.switch()
def test2():
    print(56)
    gr1.switch()
    print(78)

gr1 = greenlet(test1) #启动一个携程
gr2 = greenlet(test2)
gr1.switch()

Gevent:自动进行切换

import gevent

def foo():
    print(Running in foo)
    gevent.sleep(2)
    print(Explicit context switch to foo again)
def bar():
    print(Explicit精确的 context内容 to bar)
    gevent.sleep(1)
    print(Implicit context switch back to bar)
def func3():
    print("running func3 ")
    gevent.sleep(0)
    print("running func3  again ")

gevent.joinall([
    gevent.spawn(foo), #生成一个携程
    gevent.spawn(bar),
    gevent.spawn(func3),
])

用携程爬取内容:

from urllib import request
import gevent,time
from gevent import monkey
monkey.patch_all() #把当前程序的所有的io操作给我单独的做上标记

def f(url):
    print(GET: %s % url)
    resp = request.urlopen(url)
    data = resp.read()
    print(%d bytes received from %s. % (len(data), url))

urls = [https://www.python.org/,
        https://www.yahoo.com/,
        https://github.com/ ]
time_start = time.time()
for url in urls:
    f(url)
print("同步cost",time.time() - time_start)
async_time_start = time.time()
gevent.joinall([
    gevent.spawn(f, https://www.python.org/),
    gevent.spawn(f, https://www.yahoo.com/),
    gevent.spawn(f, https://github.com/),
])
print("异步cost",time.time() - async_time_start)

用携程实现socket:

服务器端:

import sys
import socket
import time
import gevent

from gevent import socket, monkey

monkey.patch_all()

def server(port):
    s = socket.socket()
    s.bind((0.0.0.0, port))
    s.listen(500)
    while True:
        cli, addr = s.accept()
        gevent.spawn(handle_request, cli)

def handle_request(conn):
    try:
        while True:
            data = conn.recv(1024)
            print("recv:", data)
            conn.send(data)
            if not data:
                conn.shutdown(socket.SHUT_WR)

    except Exception as  ex:
        print(ex)
    finally:
        conn.close()

if __name__ == __main__:
    server(8001)

客户端:

import socket

HOST = localhost  # The remote host
PORT = 9999  # The same port as used by the server
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect((HOST, PORT))
while True:
    msg = bytes(input(">>:"), encoding="utf8")
    s.sendall(msg)
    data = s.recv(1024)    print(Received, data)
s.close()

事件驱动模型
事件驱动模型大体思路如下:
1. 有一个事件(消息)队列;
2. 鼠标按下时,往这个队列中增加一个点击事件(消息);
3. 有个循环,不断从队列取出事件,根据不同的事件,调用不同的函数,如onClick()、onKeyDown()等;
4. 事件(消息)一般都各自保存各自的处理函数指针,这样,每个消息都有独立的处理函数;

 

以上是关于线程进程携程的主要内容,如果未能解决你的问题,请参考以下文章

python对比线程,进程,携程,异步,哪个快

网络编程之线程,携程,进程的区别

线程进程携程理解

《Python》线程池携程

《Python》线程池携程

18 11 26 用多进程 多线程 携程 实现 http 服务器的创建