生产SparkStreaming数据零丢失最佳实践(含代码)
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了生产SparkStreaming数据零丢失最佳实践(含代码)相关的知识,希望对你有一定的参考价值。
mysql创建存储offset的表格mysql> use test
mysql> create table hlw_offset(
topic varchar(32),
groupid varchar(50),
partitions int,
fromoffset bigint,
untiloffset bigint,
primary key(topic,groupid,partitions)
);
Maven依赖包
<scala.version>2.11.8</scala.version>
<spark.version>2.3.1</spark.version>
<scalikejdbc.version>2.5.0</scalikejdbc.version>
--------------------------------------------------
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>$scala.version</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>$spark.version</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.11</artifactId>
<version>$spark.version</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.11</artifactId>
<version>$spark.version</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-kafka-0-8_2.11</artifactId>
<version>$spark.version</version>
</dependency>
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>5.1.27</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.scalikejdbc/scalikejdbc -->
<dependency>
<groupId>org.scalikejdbc</groupId>
<artifactId>scalikejdbc_2.11</artifactId>
<version>2.5.0</version>
</dependency>
<dependency>
<groupId>org.scalikejdbc</groupId>
<artifactId>scalikejdbc-config_2.11</artifactId>
<version>2.5.0</version>
</dependency>
<dependency>
<groupId>com.typesafe</groupId>
<artifactId>config</artifactId>
<version>1.3.0</version>
</dependency>
<dependency>
<groupId>org.apache.commons</groupId>
<artifactId>commons-lang3</artifactId>
<version>3.5</version>
</dependency>
实现思路
1)StreamingContext
2)从kafka中获取数据(从外部存储获取offset-->根据offset获取kafka中的数据)
3)根据业务进行逻辑处理
4)将处理结果存到外部存储中--保存offset
5)启动程序,等待程序结束
代码实现
-
SparkStreaming主体代码如下
import kafka.common.TopicAndPartition import kafka.message.MessageAndMetadata import kafka.serializer.StringDecoder import org.apache.spark.SparkConf import org.apache.spark.streaming.kafka.HasOffsetRanges, KafkaUtils import org.apache.spark.streaming.Seconds, StreamingContext import scalikejdbc._ import scalikejdbc.config._ object JDBCOffsetApp def main(args: Array[String]): Unit = //创建SparkStreaming入口 val conf = new SparkConf().setMaster("local[2]").setAppName("JDBCOffsetApp") val ssc = new StreamingContext(conf,Seconds(5)) //kafka消费主题 val topics = ValueUtils.getStringValue("kafka.topics").split(",").toSet //kafka参数 //这里应用了自定义的ValueUtils工具类,来获取application.conf里的参数,方便后期修改 val kafkaParams = Map[String,String]( "metadata.broker.list"->ValueUtils.getStringValue("metadata.broker.list"), "auto.offset.reset"->ValueUtils.getStringValue("auto.offset.reset"), "group.id"->ValueUtils.getStringValue("group.id") ) //先使用scalikejdbc从MySQL数据库中读取offset信息 //+------------+------------------+------------+------------+-------------+ //| topic | groupid | partitions | fromoffset | untiloffset | //+------------+------------------+------------+------------+-------------+ //MySQL表结构如上,将“topic”,“partitions”,“untiloffset”列读取出来 //组成 fromOffsets: Map[TopicAndPartition, Long],后面createDirectStream用到 DBs.setup() val fromOffset = DB.readOnly( implicit session => SQL("select * from hlw_offset").map(rs => (TopicAndPartition(rs.string("topic"),rs.int("partitions")),rs.long("untiloffset")) ).list().apply() ).toMap //如果MySQL表中没有offset信息,就从0开始消费;如果有,就从已经存在的offset开始消费 val messages = if (fromOffset.isEmpty) println("从头开始消费...") KafkaUtils.createDirectStream[String,String,StringDecoder,StringDecoder](ssc,kafkaParams,topics) else println("从已存在记录开始消费...") val messageHandler = (mm:MessageAndMetadata[String,String]) => (mm.key(),mm.message()) KafkaUtils.createDirectStream[String,String,StringDecoder,StringDecoder,(String,String)](ssc,kafkaParams,fromOffset,messageHandler) messages.foreachRDD(rdd=> if(!rdd.isEmpty()) //输出rdd的数据量 println("数据统计记录为:"+rdd.count()) //官方案例给出的获得rdd offset信息的方法,offsetRanges是由一系列offsetRange组成的数组 // trait HasOffsetRanges // def offsetRanges: Array[OffsetRange] // val offsetRanges = rdd.asInstanceOf[HasOffsetRanges].offsetRanges offsetRanges.foreach(x => //输出每次消费的主题,分区,开始偏移量和结束偏移量 println(s"---$x.topic,$x.partition,$x.fromOffset,$x.untilOffset---") //将最新的偏移量信息保存到MySQL表中 DB.autoCommit( implicit session => SQL("replace into hlw_offset(topic,groupid,partitions,fromoffset,untiloffset) values (?,?,?,?,?)") .bind(x.topic,ValueUtils.getStringValue("group.id"),x.partition,x.fromOffset,x.untilOffset) .update().apply() ) ) ) ssc.start() ssc.awaitTermination()
-
自定义的ValueUtils工具类如下
import com.typesafe.config.ConfigFactory import org.apache.commons.lang3.StringUtils object ValueUtils val load = ConfigFactory.load() def getStringValue(key:String, defaultValue:String="") = val value = load.getString(key) if(StringUtils.isNotEmpty(value)) value else defaultValue
-
application.conf内容如下
metadata.broker.list = "192.168.137.251:9092" auto.offset.reset = "smallest" group.id = "hlw_offset_group" kafka.topics = "hlw_offset" serializer.class = "kafka.serializer.StringEncoder" request.required.acks = "1" # JDBC settings db.default.driver = "com.mysql.jdbc.Driver" db.default.url="jdbc:mysql://hadoop000:3306/test" db.default.user="root" db.default.password="123456"
-
自定义kafka producer
import java.util.Date, Properties import kafka.producer.KeyedMessage, Producer, ProducerConfig object KafkaProducer def main(args: Array[String]): Unit = val properties = new Properties() properties.put("serializer.class",ValueUtils.getStringValue("serializer.class")) properties.put("metadata.broker.list",ValueUtils.getStringValue("metadata.broker.list")) properties.put("request.required.acks",ValueUtils.getStringValue("request.required.acks")) val producerConfig = new ProducerConfig(properties) val producer = new Producer[String,String](producerConfig) val topic = ValueUtils.getStringValue("kafka.topics") //每次产生100条数据 var i = 0 for (i <- 1 to 100) val runtimes = new Date().toString val messages = new KeyedMessage[String, String](topic,i+"","hlw: "+runtimes) producer.send(messages) println("数据发送完毕...")
测试
-
启动kafka服务,并创建主题
[[email protected] bin]$ ./kafka-server-start.sh -daemon /home/hadoop/app/kafka_2.11-0.10.0.1/config/server.properties [[email protected] bin]$ ./kafka-topics.sh --list --zookeeper localhost:2181/kafka [[email protected] bin]$ ./kafka-topics.sh --create --zookeeper localhost:2181/kafka --replication-factor 1 --partitions 1 --topic hlw_offset
-
测试前查看MySQL中offset表,刚开始是个空表
mysql> select * from hlw_offset; Empty set (0.00 sec)
-
通过kafka producer产生500条数据
-
启动SparkStreaming程序
//控制台输出结果: 从头开始消费... 数据统计记录为:500 ---hlw_offset,0,0,500---
查看MySQL表,offset记录成功
mysql> select * from hlw_offset;
+------------+------------------+------------+------------+-------------+
| topic | groupid | partitions | fromoffset | untiloffset |
+------------+------------------+------------+------------+-------------+
| hlw_offset | hlw_offset_group | 0 | 0 | 500 |
+------------+------------------+------------+------------+-------------+
-
关闭SparkStreaming程序,再使用kafka producer生产300条数据,再次启动spark程序(如果spark从500开始消费,说明成功读取了offset,做到了只读取一次语义)
//控制台结果输出: 从已存在记录开始消费... 数据统计记录为:300 ---hlw_offset,0,500,800---
-
查看更新后的offset MySQL数据
mysql> select * from hlw_offset; +------------+------------------+------------+------------+-------------+ | topic | groupid | partitions | fromoffset | untiloffset | +------------+------------------+------------+------------+-------------+ | hlw_offset | hlw_offset_group | 0 | 500 | 800 | +------------+------------------+------------+------------+-------------+
以上是关于生产SparkStreaming数据零丢失最佳实践(含代码)的主要内容,如果未能解决你的问题,请参考以下文章
Spark Streaming和Kafka整合保证数据零丢失