SCUT - 354 - CC的简单多项式 - 杜教筛
Posted yinku
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了SCUT - 354 - CC的简单多项式 - 杜教筛相关的知识,希望对你有一定的参考价值。
https://scut.online/p/354
跟多项式一点关系都没有。
注意到其实两个多项式在1处求值,那么就是他们的系数加起来。
列一列发现系数就是n以内两两求gcd的值,还自动把0去掉了。
那么就是
\(\sum\limits_i=1^n\sum\limits_i=1^ngcd(i^2,j^2)\)
这种情况就要枚举g但是为了方便我们也是枚举g而不是g平方
\(\sum\limits_g=1^ng^2\sum\limits_i=1^n\sum\limits_i=1^n[gcd(i^2,j^2)==g^2]\)
列一列gcd的分解式发现其实可以把平方约分掉
\(\sum\limits_g=1^ng^2\sum\limits_i=1^n\sum\limits_i=1^n[gcd(i,j)==g]\)
二话不说除以g
\(\sum\limits_g=1^ng^2\sum\limits_i=1^\lfloor\fracng\rfloor\sum\limits_i=1^\lfloor\fracng\rfloor[gcd(i,j)==1]\)
套上反演
\(\sum\limits_g=1^ng^2\sum\limits_i=1^\lfloor\fracng\rfloor\sum\limits_i=1^\lfloor\fracng\rfloor\sum\limits_k|gcd(i,j)\mu(k)\)
\(\sum\limits_g=1^ng^2\sum\limits_k=1^n\mu(k)\lfloor\fracngk\rfloor^2\)
枚举T
\(\sum\limits_T=1^n\lfloor\fracnT\rfloor^2\sum\limits_g|Tg^2\mu(\fracTg)\)
假如搞得出后面那个狄利克雷卷积的前缀和,那么可以分块回答,看看复杂度刚刚够的样子。
后面那个是
\(\sum\limits_g|Tg^2\mu(\fracTg)\)
也就是
\(id^2*\mu\)
嗷神提示卷一个东西,恒等函数\(I(n)=1\)
\((id^2*\mu)*I\)
结合律
\(id^2*(\mu*I)\)
后面那个就是
\(id^2*(\epsilon)\)
这个东西展开就是
\(\sum\limits_g|Tg^2[\fracTg==1]\)
\(T^2\)
也就是说卷积之后的前缀和是\(s_2\),而恒等函数的前缀和就是\(s_0\)
上一波杜教筛就可以了
测试发现unorder_map和cc_hash_table差异非常小。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
inline ll read()
ll x = 0;
//int f = 0;
char c;
do
c = getchar();
/*if(c == '-')
f = 1;*/
while(c < '0' || c > '9');
do
x = (x << 3) + (x << 1) + c - '0';
c = getchar();
while(c >= '0' && c <= '9');
//return f ? -x : x;
return x;
inline void _write(int x)
if(x > 9)
_write(x / 10);
putchar(x % 10 + '0');
inline void write(int x)
if(x < 0)
putchar('-');
x = -x;
_write(x);
putchar('\n');
/*void TestCase(int ti);
int main()
#ifdef Yinku
freopen("Yinku.in", "r", stdin);
//freopen("Yinku.out","w",stdout);
#endif // Yinku
int T = 1;
for(int ti = 1; ti <= T; ti++)
TestCase(ti);
*/
/*--- ---*/
const int mod = 998244353;
const int inv2 = (mod + 1) >> 1;
const int MAXN = 1.5e7;
int pri[MAXN + 1];
int &pritop = pri[0];
int f[MAXN + 1];
int pk[MAXN + 1];
void sieve(int n = MAXN)
pk[1] = 1;
f[1] = 1;
for(int i = 2; i <= n; i++)
if(!pri[i])
pri[++pritop] = i;
pk[i] = i;
f[i] = (1ll * i * i - 1ll) % mod;
for(int j = 1; j <= pritop; j++)
int &p = pri[j];
int t = i * p;
if(t > n)
break;
pri[t] = 1;
if(i % p)
pk[t] = p;
f[t] = 1ll * f[i] * f[p] % mod;
else
pk[t] = pk[i] * p;
if(pk[t] == t)
f[t] = 1ll * f[i] * p % mod * p % mod;
else
f[t] = 1ll * f[t / pk[t]] * f[pk[t]] % mod;
break;
for(int i = 1; i <= n; i++)
f[i] = f[i - 1] + f[i];
if(f[i] >= mod)
f[i] -= mod;
/*inline int qpow(ll x, int n)
ll res = 1;
while(n)
if(n & 1)
res *= x;
if(res >= mod)
res %= mod;
x *= x;
if(x >= mod)
x %= mod;
n >>= 1;
return res;
*/
const int inv6 = 166374059; //qpow(6, mod - 2);
inline int s2(ll n)
if(n >= mod)
n %= mod;
ll tmp = n * (n + 1);
if(tmp >= mod)
tmp %= mod;
tmp *= n * 2 + 1 ;
if(tmp >= mod)
tmp %= mod;
tmp *= inv6;
if(tmp >= mod)
tmp %= mod;
return tmp;
unordered_map<ll, int> Sf;
inline int F(ll n)
if(n <= MAXN)
return f[n];
if(Sf.count(n))
return Sf[n];
ll ret = s2(n);
for(ll l = 2, r; l <= n; l = r + 1)
ll t = n / l;
r = n / t;
ret -= (r - l + 1) % mod * F(t) % mod;
if(ret < 0)
ret += mod;
return Sf[n] = ret;
inline int S(ll n)
ll res = 0;
for(ll l = 1, r; l <= n; l = r + 1)
ll t = n / l;
r = n / t;
ll tmp = F(r) - F(l - 1);
if(tmp < 0)
tmp += mod;
if(t >= mod)
t %= mod;
t *= t;
if(t >= mod)
t %= mod;
tmp *= t;
if(tmp >= mod)
tmp %= mod;
res += tmp;
if(res >= mod)
res -= mod;
return res;
int main()
#ifdef Yinku
freopen("Yinku.in", "r", stdin);
//freopen("Yinku.out","w",stdout);
#endif // Yinku
sieve();
int T = read();
while(T--)
write(S(read()));
但是好像发现一个问题,别人都是欧拉函数的?
\(\sum\limits_g=1^ng^2\sum\limits_i=1^\lfloor\fracng\rfloor\sum\limits_i=1^\lfloor\fracng\rfloor[gcd(i,j)==1]\)
这里内部记为
\(S(n)=\sum\limits_i=1^n\sum\limits_i=1^n[gcd(i,j)==1]\)
n以内互质对的个数?那么枚举较大的那个,小的那个要和他互质,就是欧拉函数,大小互换多了一倍,其中(1,1)重复去掉一个
\(S(n)=-1+2\sum\limits_i=1^n\varphi(i)\)
所以原式就是
\(\sum\limits_g=1^ng^2S(\lfloor\fracng\rfloor)\)
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
inline ll read()
ll x = 0;
//int f = 0;
char c;
do
c = getchar();
/*if(c == '-')
f = 1;*/
while(c < '0' || c > '9');
do
x = (x << 3) + (x << 1) + c - '0';
c = getchar();
while(c >= '0' && c <= '9');
//return f ? -x : x;
return x;
inline void _write(int x)
if(x > 9)
_write(x / 10);
putchar(x % 10 + '0');
inline void write(int x)
if(x < 0)
putchar('-');
x = -x;
_write(x);
putchar('\n');
/*void TestCase(int ti);
int main()
#ifdef Yinku
freopen("Yinku.in", "r", stdin);
//freopen("Yinku.out","w",stdout);
#endif // Yinku
int T = 1;
for(int ti = 1; ti <= T; ti++)
TestCase(ti);
*/
/*--- ---*/
const int mod = 998244353;
const int inv2 = (mod + 1) >> 1;
const int MAXN = 1.6e7;
int pri[MAXN + 1];
int &pritop = pri[0];
int phi[MAXN + 1];
void sieve(int n = MAXN)
phi[1] = 1;
for(int i = 2; i <= n; i++)
if(!pri[i])
pri[++pritop] = i;
phi[i] = i - 1;
for(int j = 1; j <= pritop; j++)
int &p = pri[j];
int t = i * p;
if(t > n)
break;
pri[t] = 1;
if(i % p)
phi[t] = phi[i] * phi[p];
else
phi[t] = phi[i] * p;
break;
for(int i = 1; i <= n; i++)
phi[i] += phi[i - 1];
if(phi[i] >= mod)
phi[i] -= mod;
/*inline int qpow(ll x, int n)
ll res = 1;
while(n)
if(n & 1)
res *= x;
if(res >= mod)
res %= mod;
x *= x;
if(x >= mod)
x %= mod;
n >>= 1;
return res;
*/
inline int s1(ll n)
if(n >= mod)
n %= mod;
return n * (n + 1) % mod * inv2 % mod;
const int inv6 = 166374059; //qpow(6, mod - 2);
inline int s2(ll n)
if(n >= mod)
n %= mod;
ll tmp = n * (n + 1);
if(tmp >= mod)
tmp %= mod;
tmp *= n * 2 + 1 ;
if(tmp >= mod)
tmp %= mod;
tmp *= inv6;
if(tmp >= mod)
tmp %= mod;
return tmp;
unordered_map<ll, int> Sphi;
inline int Phi(ll n)
if(n <= MAXN)
return phi[n];
if(Sphi.count(n))
return Sphi[n];
int ret = s1(n);
for(ll l = 2, r, t; l <= n; l = r + 1)
t = n / l;
r = n / t;
ret -= (r - l + 1) % mod * Phi(t) % mod;
if(ret < 0)
ret += mod;
return Sphi[n] = ret;
inline int S(ll n)
return (2 * Phi(n) - 1) % mod;
inline int Ans(ll n)
int res = 0;
for(ll l = 1, r, t; l <= n; l = r + 1)
t = n / l;
r = n / t;
ll tmp = s2(r) - s2(l - 1);
if(tmp < 0)
tmp += mod;
tmp *= S(t);
if(tmp >= mod)
tmp %= mod;
res += tmp;
if(res >= mod)
res -= mod;
return res;
int main()
#ifdef Yinku
freopen("Yinku.in", "r", stdin);
//freopen("Yinku.out","w",stdout);
#endif // Yinku
sieve();
int T = read();
while(T--)
write(Ans(read()));
以上是关于SCUT - 354 - CC的简单多项式 - 杜教筛的主要内容,如果未能解决你的问题,请参考以下文章