Kafka+Storm+HDFS整合实践
Posted 专注it
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Kafka+Storm+HDFS整合实践相关的知识,希望对你有一定的参考价值。
在基于Hadoop平台的很多应用场景中,我们需要对数据进行离线和实时分析,离线分析可以很容易地借助于Hive来实现统计分析,但是对于实时的需求Hive就不合适了。实时应用场景可以使用Storm,它是一个实时处理系统,它为实时处理类应用提供了一个计算模型,可以很容易地进行编程处理。为了统一离线和实时计算,一般情况下,我们都希望将离线和实时计算的数据源的集合统一起来作为输入,然后将数据的流向分别经由实时系统和离线分析系统,分别进行分析处理,这时我们可以考虑将数据源(如使用Flume收集日志)直接连接一个消息中间件,如Kafka,可以整合Flume+Kafka,Flume作为消息的Producer,生产的消息数据(日志数据、业务请求数据等等)发布到Kafka中,然后通过订阅的方式,使用Storm的Topology作为消息的Consumer,在Storm集群中分别进行如下两个需求场景的处理:
- 直接使用Storm的Topology对数据进行实时分析处理
- 整合Storm+HDFS,将消息处理后写入HDFS进行离线分析处理
实时处理,只要开发满足业务需要的Topology即可,不做过多说明。这里,我们主要从安装配置Kafka、Storm,以及整合Kafka+Storm、整合Storm+HDFS、整合Kafka+Storm+HDFS这几点来配置实践,满足上面提出的一些需求。配置实践使用的软件包如下所示:
- zookeeper-3.4.5.tar.gz
- kafka_2.9.2-0.8.1.1.tgz
- apache-storm-0.9.2-incubating.tar.gz
- hadoop-2.2.0.tar.gz
程序配置运行所基于的操作系统为CentOS 5.11。
Kafka安装配置
我们使用3台机器搭建Kafka集群:
在安装Kafka集群之前,这里没有使用Kafka自带的Zookeeper,而是独立安装了一个Zookeeper集群,也是使用这3台机器,保证Zookeeper集群正常运行。
首先,在h1上准备Kafka安装文件,执行如下命令:
3 |
tar xvzf kafka_2.9.2-0.8.1.1.tgz |
4 |
ln -s /usr/ local /kafka_2.9.2-0.8.1.1 /usr/ local /kafka |
5 |
chown -R kafka:kafka /usr/ local /kafka_2.9.2-0.8.1.1 /usr/ local /kafka |
修改配置文件/usr/local/kafka/config/server.properties,修改如下内容:
2 |
zookeeper.connect=h1:2181,h2:2181,h3:2181/kafka |
这里需要说明的是,默认Kafka会使用ZooKeeper默认的/路径,这样有关Kafka的ZooKeeper配置就会散落在根路径下面,如果你有其他的应用也在使用ZooKeeper集群,查看ZooKeeper中数据可能会不直观,所以强烈建议指定一个chroot路径,直接在zookeeper.connect配置项中指定:
1 |
zookeeper.connect=h1:2181,h2:2181,h3:2181/kafka |
而且,需要手动在ZooKeeper中创建路径/kafka,使用如下命令连接到任意一台ZooKeeper服务器:
1 |
cd /usr/ local /zookeeper |
在ZooKeeper执行如下命令创建chroot路径:
这样,每次连接Kafka集群的时候(使用--zookeeper
选项),也必须使用带chroot路径的连接字符串,后面会看到。
然后,将配置好的安装文件同步到其他的h2、h3节点上:
1 |
scp -r /usr/ local /kafka_2.9.2-0.8.1.1/ h2:/usr/ local / |
2 |
scp -r /usr/ local /kafka_2.9.2-0.8.1.1/ h3:/usr/ local / |
最后,在h2、h3节点上配置,执行如下命令:
2 |
ln -s /usr/ local /kafka_2.9.2-0.8.1.1 /usr/ local /kafka |
3 |
chown -R kafka:kafka /usr/ local /kafka_2.9.2-0.8.1.1 /usr/ local /kafka |
并修改配置文件/usr/local/kafka/config/server.properties内容如下所示:
因为Kafka集群需要保证各个Broker的id在整个集群中必须唯一,需要调整这个配置项的值(如果在单机上,可以通过建立多个Broker进程来模拟分布式的Kafka集群,也需要Broker的id唯一,还需要修改一些配置目录的信息)。
在集群中的h1、h2、h3这三个节点上分别启动Kafka,分别执行如下命令:
1 |
bin/kafka-server-start.sh /usr/ local /kafka/config/server.properties & |
可以通过查看日志,或者检查进程状态,保证Kafka集群启动成功。
我们创建一个名称为my-replicated-topic5的Topic,5个分区,并且复制因子为3,执行如下命令:
1 |
bin/kafka-topics.sh --create --zookeeper h1:2181,h2:2181,h3:2181/kafka --replication-factor 3 --partitions 5 --topic my-replicated-topic5 |
查看创建的Topic,执行如下命令:
1 |
bin/kafka-topics.sh --describe --zookeeper h1:2181,h2:2181,h3:2181/kafka --topic my-replicated-topic5 |
结果信息如下所示:
1 |
Topic:my-replicated-topic5 PartitionCount:5 ReplicationFactor:3 Configs: |
2 |
Topic: my-replicated-topic5 Partition: 0 Leader: 0 Replicas: 0,2,1 Isr: 0,2,1 |
3 |
Topic: my-replicated-topic5 Partition: 1 Leader: 0 Replicas: 1,0,2 Isr: 0,2,1 |
4 |
Topic: my-replicated-topic5 Partition: 2 Leader: 2 Replicas: 2,1,0 Isr: 2,0,1 |
5 |
Topic: my-replicated-topic5 Partition: 3 Leader: 0 Replicas: 0,1,2 Isr: 0,2,1 |
6 |
Topic: my-replicated-topic5 Partition: 4 Leader: 2 Replicas: 1,2,0 Isr: 2,0,1 |
上面Leader、Replicas、Isr的含义如下:
3 |
Replicas : 复制该分区log的节点列表 |
4 |
Isr : "in-sync" replicas,当前活跃的副本列表(是一个子集),并且可能成为Leader |
我们可以通过Kafka自带的bin/kafka-console-producer.sh和bin/kafka-console-consumer.sh脚本,来验证演示如果发布消息、消费消息。
在一个终端,启动Producer,并向我们上面创建的名称为my-replicated-topic5的Topic中生产消息,执行如下脚本:
1 |
bin/kafka-console-producer.sh --broker-list h1:9092,h2:9092,h3:9092 --topic my-replicated-topic5 |
在另一个终端,启动Consumer,并订阅我们上面创建的名称为my-replicated-topic5的Topic中生产的消息,执行如下脚本:
1 |
bin/kafka-console-consumer.sh --zookeeper h1:2181,h2:2181,h3:2181/kafka --from-beginning --topic my-replicated-topic5 |
可以在Producer终端上输入字符串消息行,然后回车,就可以在Consumer终端上看到消费者消费的消息内容。
也可以参考Kafka的Producer和Consumer的Java API,通过API编码的方式来实现消息生产和消费的处理逻辑。
Storm安装配置
Storm集群也依赖Zookeeper集群,要保证Zookeeper集群正常运行。Storm的安装配置比较简单,我们仍然使用下面3台机器搭建:
首先,在h1节点上,执行如下命令安装:
3 |
tar xvzf apache-storm-0.9.2-incubating. tar .gz |
4 |
ln -s /usr/ local /apache-storm-0.9.2-incubating /usr/ local /storm |
5 |
chown -R storm:storm /usr/ local /apache-storm-0.9.2-incubating /usr/ local /storm |
然后,修改配置文件conf/storm.yaml,内容如下所示:
01 |
storm.zookeeper.servers: |
05 |
storm.zookeeper.port: 2181 |
09 |
supervisor.slots.ports: |
15 |
storm.local.dir: "/tmp/storm" |
将配置好的安装文件,分发到其他节点上:
1 |
scp -r /usr/ local /apache-storm-0.9.2-incubating/ h2:/usr/ local / |
2 |
scp -r /usr/ local /apache-storm-0.9.2-incubating/ h3:/usr/ local / |
最后,在h2、h3节点上配置,执行如下命令:
2 |
ln -s /usr/ local /apache-storm-0.9.2-incubating /usr/ local /storm |
3 |
chown -R storm:storm /usr/ local /apache-storm-0.9.2-incubating /usr/ local /storm |
Storm集群的主节点为Nimbus,从节点为Supervisor,我们需要在h1上启动Nimbus服务,在从节点h2、h3上启动Supervisor服务:
为了方便监控,可以启动Storm UI,可以从Web页面上监控Storm Topology的运行状态,例如在h2上启动:
这样可以通过访问http://h2:8080/来查看Topology的运行状况。
整合Kafka+Storm
消息通过各种方式进入到Kafka消息中间件,比如可以通过使用Flume来收集日志数据,然后在Kafka中路由暂存,然后再由实时计算程序Storm做实时分析,这时我们就需要将在Storm的Spout中读取Kafka中的消息,然后交由具体的Spot组件去分析处理。实际上,apache-storm-0.9.2-incubating这个版本的Storm已经自带了一个集成Kafka的外部插件程序storm-kafka,可以直接使用,例如我使用的Maven依赖配置,如下所示:
02 |
< groupId >org.apache.storm</ groupId > |
03 |
< artifactId >storm-core</ artifactId > |
04 |
< version >0.9.2-incubating</ version > |
05 |
< scope >provided</ scope > |
08 |
< groupId >org.apache.storm</ groupId > |
09 |
< artifactId >storm-kafka</ artifactId > |
10 |
< version >0.9.2-incubating</ version > |
13 |
< groupId >org.apache.kafka</ groupId > |
14 |
< artifactId >kafka_2.9.2</ artifactId > |
15 |
< version >0.8.1.1</ version > |
18 |
< groupId >org.apache.zookeeper</ groupId > |
19 |
< artifactId >zookeeper</ artifactId > |
22 |
< groupId >log4j</ groupId > |
23 |
< artifactId >log4j</ artifactId > |
下面,我们开发了一个简单WordCount示例程序,从Kafka读取订阅的消息行,通过空格拆分出单个单词,然后再做词频统计计算,实现的Topology的代码,如下所示:
001 |
package org.shirdrn.storm.examples; |
003 |
import java.util.Arrays; |
004 |
import java.util.HashMap; |
005 |
import java.util.Iterator; |
006 |
import java.util.Map; |
007 |
import java.util.Map.Entry; |
008 |
import java.util.concurrent.atomic.AtomicInteger; |
010 |
import org.apache.commons.logging.Log; |
011 |
import org.apache.commons.logging.LogFactory; |
013 |
import storm.kafka.BrokerHosts; |
014 |
import storm.kafka.KafkaSpout; |
015 |
import storm.kafka.SpoutConfig; |
016 |
import storm.kafka.StringScheme; |
017 |
import storm.kafka.ZkHosts; |
018 |
import backtype.storm.Config; |
019 |
import backtype.storm.LocalCluster; |
020 |
import backtype.storm.StormSubmitter; |
021 |
import backtype.storm.generated.AlreadyAliveException; |
022 |
import backtype.storm.generated.InvalidTopologyException; |
023 |
import backtype.storm.spout.SchemeAsMultiScheme; |
024 |
import backtype.storm.task.OutputCollector; |
025 |
import backtype.storm.task.TopologyContext; |
026 |
import backtype.storm.topology.OutputFieldsDeclarer; |
027 |
import backtype.storm.topology.TopologyBuilder; |
028 |
import backtype.storm.topology.base.BaseRichBolt; |
029 |
import backtype.storm.tuple.Fields; |
030 |
import backtype.storm.tuple.Tuple; |
031 |
import backtype.storm.tuple.Values; |
033 |
public class MyKafkaTopology { |
035 |
public static class KafkaWordSplitter extends BaseRichBolt { |
037 |
private static final Log LOG = LogFactory.getLog(KafkaWordSplitter. class ); |
038 |
private static final long serialVersionUID = 886149197481637894L; |
039 |
private OutputCollector collector; |
042 |
public void prepare(Map stormConf, TopologyContext context, |
043 |
OutputCollector collector) { |
044 |
this .collector = collector; |
048 |
public void execute(Tuple input) { |
049 |
String line = input.getString( 0 ); |
050 |
LOG.info( "RECV[kafka -> splitter] " + line); |
051 |
String[] words = line.split( "\\s+" ); |
052 |
for (String word : words) { |
053 |
LOG.info( "EMIT[splitter -> counter] " + word); |
054 |
collector.emit(input, new Values(word, 1 )); |
056 |
collector.ack(input); |
060 |
public void declareOutputFields(OutputFieldsDeclarer declarer) { |
061 |
declarer.declare( new Fields( "word" , "count" )); |
066 |
public static class WordCounter extends BaseRichBolt { |
068 |
private static final Log LOG = LogFactory.getLog(WordCounter. class ); |
069 |
private static final long serialVersionUID = 886149197481637894L; |
070 |
private OutputCollector collector; |
071 |
private Map<String, AtomicInteger> counterMap; |
074 |
public void prepare(Map stormConf, TopologyContext context, |
075 |
OutputCollector collector) { |
076 |
this .collector = collector; |
077 |
this .counterMap = new HashMap<String, AtomicInteger>(); |
081 |
public void execute(Tuple input) { |
082 |
String word = input.getString( 0 ); |
083 |
int count = input.getInteger( 1 ); |
084 |
LOG.info( "RECV[splitter -> counter] " + word + " : " + count); |
085 |
AtomicInteger ai = this .counterMap.get(word); |
087 |
ai = new AtomicInteger(); |
088 |
this .counterMap.put(word, ai); |
091 |
collector.ack(input); |
092 |
LOG.info( "CHECK statistics map: " + this .counterMap); |
096 |
public void cleanup() { |
097 |
LOG.info( "The final result:" ); |