对比Excel学Python数据可视化

Posted zc-beyond

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了对比Excel学Python数据可视化相关的知识,希望对你有一定的参考价值。

就是利用Python生成各种图表,也是本书的核心。

1、条形图

#导入要用的matplotlib库
import matplotlib.pyplot as plt import numpy as np
#解决乱码问题 plt.rcParams[
"font.sans-serif"]=SimHei
#(在Y轴上分为1等份,在X轴上分为1等份,画布位于1象限)
plt.subplot(1,1,1) #传入基础数据 x = np.array(["东区","南区","西区","北区"]) y1 = np.array([7566,6555,5335,6310]) y2 = np.array([4500,4555,3335,5310]) #设置基本属性 plt.title("柱线图",loc="center") plt.xlabel("分区") plt.ylabel("任务量") plt.barh(x,height=0.5,label = "任务量",width = y1) #显示图例 plt.legend()
#不显示网格 plt.grid(False) #迭代赋值
for a,b in zip(x,y1): plt.text(b,a,a,ha="center",va="bottom",fontsize = 12)
#将图片存入桌面 plt.savefig(r
"C:\\Users\\admin\\Desktop\\新建文件夹\\条形图")

技术图片

2、折线图

#折线图
import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline
plt.rcParams["font.sans-serif"]=SimHei
plt.subplot(1,1,1)
# plt.subplots(1,1)
plt.xlabel("月份",)
plt.ylabel("注册量")
# plt.xticks(ticks,labels)
# plt.yticks(ticks,labels)
# plt.xticks(np.arange(12),["0","1月份","2月份","3月份","4月份","5月份","6月份","7月份","8月份","9月份","10月份","11月份"])
# plt.yticks(np.arange(1000,7000,1000),["1000人","2000人","3000人","4000人","5000人","6000人","7000","8000"])
plt.xticks(np.arange(12))

x = np.array([1,2,3,4,5,6,7,8,9,10,11])
y = np.array([866,2335,5710,6482,6120,1605,3813,4428,4631,1001,1002])
plt.plot(x,y,color = "r",linestyle = "dashdot",linewidth = 1,marker = "v",markersize = 5,label = "注册用户数")
#          linewidth = 1,marker = "o",)   
plt.title("XXX公司1-9月注册用户量",loc = "center")
for a,b in zip(x,y):
    plt.text(a,b,b,ha=center,va = bottom,fontsize = 10)

plt.grid(b = True)
plt.legend()
# plt.savefig(r"C:\\Users\\admin\\Desktop\\新建文件夹\\折线图")

技术图片

3、气泡图

#气泡图
import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline
plt.rcParams["font.sans-serif"]=SimHei
plt.subplot(1,1,1)
plt.xlabel("月份",)
plt.ylabel("注册量")
plt.title("XXX公司1-9月注册用户量",loc = "center")
x = np.array([1,2,3,4,5,6,7,8,9,10,11])
y = np.array([6,35,10,82,20,15,13,28,31,10,12])
# colors = y*10    #无用?
area = y*20
plt.scatter(x,y,marker = "o",s = area)
for a,b in zip(x,y):
    plt.text(a,b,b,ha=center,va = center,fontsize = 12,color = "white")

plt.savefig(r"C:\\Users\\admin\\Desktop\\新建文件夹\\气泡图")

技术图片

4、柱形图-堆积图

#柱形图
import matplotlib.pyplot as plt
import numpy as np
plt.rcParams["font.sans-serif"]=SimHei
plt.subplot(1,1,1)

# x = np.array(["东区","南区","西区","北区"])
x = np.array([1,2,3,4])
plt.xticks(x+0.1,["东区","南区","西区","北区"])
y1 = np.array([7566,6555,5335,6310])
y2 = np.array([4500,4555,3335,5310])

plt.title("柱线图",loc="center")
plt.xlabel("分区")
plt.ylabel("任务量")
plt.bar(x,y1,label = "任务量",width = 0.3)
# plt.bar(x+0.3,y2,label = "完成量",width = 0.3)
plt.bar(x,y2,label = "完成量",width = 0.3)
plt.legend()
plt.grid(False)

for a,b in zip(x,y1):
    plt.text(a,b,b,ha="center",va="bottom",fontsize = 12)
# for a,b in zip(x+0.3,y2):
#     plt.text(a,b,b,ha="center",va="bottom",fontsize = 12)
for a,b in zip(x,y2):
    plt.text(a,b,b,ha="center",va="bottom",fontsize = 12)
# plt.savefig(r"C:\\Users\\admin\\Desktop\\新建文件夹\\柱形图")
plt.savefig(r"C:\\Users\\admin\\Desktop\\新建文件夹\\堆积图")

技术图片

5、面积图

#面积图
import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline
plt.rcParams["font.sans-serif"]=SimHei
plt.subplot(1,1,1)
plt.xlabel("月份",)
plt.ylabel("注册量")
plt.title("XXX公司1-9月注册用户量",loc = "center")
x = np.array([1,2,3,4,5,6])
y1 = np.array([6360,6555,5335,6310,5357,6666])
y2 = np.array([4500,4555,3335,5310,4444,5674])
plt.stackplot(x,y1,y2)
plt.savefig(r"C:\\Users\\admin\\Desktop\\新建文件夹\\面积图")

技术图片

6、树地图

#树地图
#squarify.plot(size,label,color,value,edgecolor,linewidth)r
import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline
plt.rcParams["font.sans-serif"]=SimHei
import squarify

size = np.array([3.4,0.693,0.585,0.570,0.562,0.531,0.530,0.524,0.501,0.478,0.468,0.436])
xingzuo = np.array(["未知","摩揭座","天秤座","双鱼座","天竭座","金牛座",
                  "处女座","双子座","射手座","狮子座","水瓶座","白羊座"])
rate = np.array([34%,6.93%,"5.85%","5.70%","5.62%","5.31%","5.30%","5.24%","5.01%","4.78%","4.68%","4.36%"])
colors = [steelblue,#9999ff,red,indianred,green,yellow,orange]
plot = squarify.plot(sizes = size,
                    label = xingzuo,
                    color = colors,
                    value = rate,
                    edgecolor = "white",
                    linewidth = 3)
plt.title("星座",fontdict = fontsize:12)
plt.axis("off")
# plt.tick_params(top = ‘off‘,right = ‘off‘)
plt.savefig(r"C:\\Users\\admin\\Desktop\\新建文件夹\\树地图")

技术图片

7、饼图

import matplotlib.pyplot as plt
import numpy as np
x = np.array([5555,6666,7777,8888])
labels = ["A","B","C","D"]
explode = [0.1,0,0,0]
labeldistance = 1.1
plt.pie(x,labels=labels,autopct=%.1f%%,shadow=True,explode = explode,radius=1.0,labeldistance=labeldistance)
#        explode = explode,radius=1.0,labeldistance=labeldistance)   #错误示范

技术图片

8、双环形图

这个是从网上找的案例,一起总结在一块。

import matplotlib as mpl
import matplotlib.pyplot as plt

# 设置图片大小
plt.figure(figsize = (10, 8))

# 生成数据
labels = [A, B, C, D, 其他]
share_laptop = [0.45, 0.25, 0.15, 0.05, 0.10]
share_pc = [0.35, 0.35, 0.08, 0.07, 0.15]
colors = [c, r, y, g, gray]

# 外环
wedges1, texts1, autotexts1 = plt.pie(share_laptop,
    autopct = %3.1f%%,
    radius = 1,
    pctdistance = 0.85,
    colors = colors,
    startangle = 180,
    textprops = color: w,
    wedgeprops = width: 0.3, edgecolor: w
)

# 内环
wedges2, texts2, autotexts2 = plt.pie(share_pc,
    autopct = %3.1f%%,
    radius = 0.7,
    pctdistance = 0.75,
    colors = colors,
    startangle = 180,
    textprops = color: w,
    wedgeprops = width: 0.3, edgecolor: w
)

# 图例
plt.legend(wedges1,
          labels,
          fontsize = 12,
          title = 公司列表,
          loc = center right,
          bbox_to_anchor = (1, 0.6))

# 设置文本样式
plt.setp(autotexts1, size=15, weight=bold)
plt.setp(autotexts2, size=15, weight=bold)
plt.setp(texts1, size=15)

# 标题
plt.title(2017年笔记本及PC电脑市场份额, fontsize=20)
plt.savefig(r"C:\\Users\\admin\\Desktop\\新建文件夹\\环形图")
plt.show()

技术图片

以上是关于对比Excel学Python数据可视化的主要内容,如果未能解决你的问题,请参考以下文章

“对比Excel”系列再添新成员,手把手教你用Python实现报表自动化!

21数据可视化:基于 Echarts + Python 动态实时大屏范例- Excel数据源

《对比Excel,轻松学习Python数据分析》

Excel处理数据与Python处理数据方法对比

再见 Excel,这个 Python 数据可视化库太炫酷了

再见Excel!这个Python数据可视化库太炫酷了