发一个可伸缩线程池大小的python线程池。已通过测试。
Posted ydf0509
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了发一个可伸缩线程池大小的python线程池。已通过测试。相关的知识,希望对你有一定的参考价值。
发一个可伸缩线程池大小的线程池。
当任务不多时候,不开那么多线程,当任务多的时候开更多线程。当长时间没任务时候,将线程数量减小到一定数量。
""" 可自动实时调节线程数量的线程池。 """ import atexit import queue import sys import threading import time import weakref from app.utils_ydf import LoggerMixin, nb_print, LoggerLevelSetterMixin # noinspection PyShadowingBuiltins # print = nb_print _shutdown = False _threads_queues = weakref.WeakKeyDictionary() def _python_exit(): global _shutdown _shutdown = True items = list(_threads_queues.items()) for t, q in items: q.put(None) for t, q in items: t.join() atexit.register(_python_exit) class _WorkItem(LoggerMixin): def __init__(self, fn, args, kwargs): self.fn = fn self.args = args self.kwargs = kwargs def run(self): # noinspection PyBroadException try: self.fn(*self.args, **self.kwargs) except BaseException as exc: self.logger.exception(f‘函数 self.fn.__name__ 中发生错误,错误原因是 type(exc) exc ‘) def __str__(self): return f‘(self.fn.__name__, self.args, self.kwargs)‘ class CustomThreadPoolExecutor(LoggerMixin, LoggerLevelSetterMixin): def __init__(self, max_workers=None, thread_name_prefix=‘‘): """ 最好需要兼容官方concurren.futures.ThreadPoolExecutor 和改版的BoundedThreadPoolExecutor,入参名字和个数保持了一致。 :param max_workers: :param thread_name_prefix: """ self._max_workers = max_workers or 4 self._min_workers = 5 self._thread_name_prefix = thread_name_prefix self.work_queue = queue.Queue(max_workers) # self._threads = set() self._threads = weakref.WeakSet() self._lock_compute_threads_free_count = threading.Lock() self.threads_free_count = 0 self._shutdown = False self._shutdown_lock = threading.Lock() def set_min_workers(self, min_workers=5): self._min_workers = min_workers return self def change_threads_free_count(self, change_num): with self._lock_compute_threads_free_count: self.threads_free_count += change_num def submit(self, func, *args, **kwargs): with self._shutdown_lock: if self._shutdown: raise RuntimeError(‘不能添加新的任务到线程池‘) self.work_queue.put(_WorkItem(func, args, kwargs)) self._adjust_thread_count() def _adjust_thread_count(self): # if len(self._threads) < self._threads_num: self.logger.debug((self.threads_free_count, len(self._threads), len(_threads_queues), get_current_threads_num())) if self.threads_free_count < self._min_workers and len(self._threads) < self._max_workers: # t = threading.Thread(target=_work, # args=(self._work_queue,self)) t = _CustomThread(self).set_log_level(self.logger.level) t.setDaemon(True) t.start() self._threads.add(t) _threads_queues[t] = self.work_queue def shutdown(self, wait=True): with self._shutdown_lock: self._shutdown = True self.work_queue.put(None) if wait: for t in self._threads: t.join() def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.shutdown(wait=True) return False class _CustomThread(threading.Thread, LoggerMixin, LoggerLevelSetterMixin): def __init__(self, executorx: CustomThreadPoolExecutor): super().__init__() self._executorx = executorx self._run_times = 0 def _remove_thread(self, stop_resson=‘‘): # noinspection PyUnresolvedReferences self.logger.debug(f‘停止线程 self._ident, 触发条件是 stop_resson ‘) self._executorx.change_threads_free_count(-1) self._executorx._threads.remove(self) _threads_queues.pop(self) # noinspection PyProtectedMember def run(self): # noinspection PyUnresolvedReferences self.logger.debug(f‘新启动线程 self._ident ‘) self._executorx.change_threads_free_count(1) while True: try: work_item = self._executorx.work_queue.get(block=True, timeout=60) except queue.Empty: # continue # self._remove_thread() # break if self._executorx.threads_free_count > self._executorx._min_workers: self._remove_thread(f‘当前线程超过60秒没有任务,线程池中不在工作状态中的线程数量是 self._executorx.threads_free_count,超过了指定的数量 self._executorx._min_workers‘) break else: continue # nb_print(work_item) if work_item is not None: self._executorx.change_threads_free_count(-1) work_item.run() del work_item self._executorx.change_threads_free_count(1) self._run_times += 1 if self._run_times == 50: self._remove_thread(f‘运行超过了50次,销毁线程‘) break continue if _shutdown or self._executorx._shutdown: self._executorx.work_queue.put(None) break # @decorators.tomorrow_threads(20) def show_current_threads_num(sleep_time=60, process_name=‘‘, block=False): process_name = sys.argv[0] if process_name == ‘‘ else process_name def _show_current_threads_num(): while True: nb_print(f‘process_name 进程 的 线程数量是 --> threading.active_count()‘) time.sleep(sleep_time) if block: _show_current_threads_num() else: t = threading.Thread(target=_show_current_threads_num, daemon=True) t.start() def get_current_threads_num(): return threading.active_count() if __name__ == ‘__main__‘: from app.utils_ydf import decorators, BoundedThreadPoolExecutor # @decorators.keep_circulating(1) def f1(a): time.sleep(0.2) nb_print(f‘a 。。。。。。。‘) # raise Exception(‘抛个错误测试‘) # show_current_threads_num() pool = CustomThreadPoolExecutor(200).set_log_level(10).set_min_workers() # pool = BoundedThreadPoolExecutor(200) # 测试对比原来写的BoundedThreadPoolExecutor show_current_threads_num(sleep_time=5) for i in range(300): time.sleep(0.3) # 这里的间隔时间模拟,当任务来临不密集,只需要少量线程就能搞定f1了,因为f1的消耗时间短,不需要开那么多线程,CustomThreadPoolExecutor比BoundedThreadPoolExecutor 优势之一。 pool.submit(f1, str(i)) nb_print(6666) # pool.shutdown(wait=True) pool.submit(f1, ‘yyyy‘) # 下面测试阻塞主线程退出的情况。注释掉可以测主线程退出的情况。 while True: time.sleep(10)
以上是关于发一个可伸缩线程池大小的python线程池。已通过测试。的主要内容,如果未能解决你的问题,请参考以下文章