多线程(十AQS原理-ReentrantLock实现)

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了多线程(十AQS原理-ReentrantLock实现)相关的知识,希望对你有一定的参考价值。

ReentrantLock介绍

ReentrantLock 基于AQS实现了公平和非公平的独占锁功能。

ReentrantLock定义AQS的同步状态(synchronization state)如下:

State为0表示锁可用;为1表示被占用;为N表示锁重入的次数,是独占资源。

ReentrantLock实现公平锁原理

案例代码如下:

1、启动文件

public class Main 

    public static void main(String[] args) throws ParseException 

        ReentrantLock lock = new ReentrantLock(true);
        Thread t1 = new Thread(new Task(lock),"Thread-1");
        Thread t2 = new Thread(new Task(lock),"Thread-2");
        Thread t3 = new Thread(new Task(lock),"Thread-3");

        t1.start();
        t2.start();
        t3.start();
    

2、Task

import java.util.concurrent.locks.ReentrantLock;

public class Task implements Runnable

    private ReentrantLock lock;

    public Task(ReentrantLock lock) 
        this.lock = lock;
    

    @Override
    public void run() 

        try 
            lock.lock();
            System.out.println(Thread.currentThread().getName() + "获取到锁....");
            Thread.sleep(2000);
         catch (InterruptedException e) 
            e.printStackTrace();
         finally 
            System.out.println(Thread.currentThread().getName() + "释放锁....");
            lock.unlock();
        
    

3、执行结果:
技术图片

案例分析

1、Thread-1调用lock方法

技术图片

ReentrantLock内部继承AQS实现了1个抽象类Sync

技术图片

继承于Sync实现了2个内部类FairSync(公平的)和NonfairSync(非公平的)

此时调用FairSync的lock方法

技术图片

acquire方法来自AQS,注意参数是1

技术图片

tryAcquire是ReentrantLock自己实现的,尝试获取锁

protected final boolean tryAcquire(int acquires)  //参数是1
        final Thread current = Thread.currentThread(); //当前线程
        int c = getState(); //获取当前同步状态
        if (c == 0)  //如果是0,则锁没有被占用
            //等待队列中,前面没有其他等待的线程,则用CAS的方法更新同步状态state
            if (!hasQueuedPredecessors() &&
                    compareAndSetState(0, acquires)) 
                setExclusiveOwnerThread(current); //成功的话,则设置锁的占有线程为当前线程
                return true; //返回获取资源成功
            
        
        //如果锁已经被占用,则判断是不是自己占用的
        else if (current == getExclusiveOwnerThread()) 
            int nextc = c + acquires;//如果是自己占用的,则是重入,增加state值,累加1
            if (nextc < 0) //重入次数过大,抛出异常
                throw new Error("Maximum lock count exceeded");
            setState(nextc); //设置state值
            return true; //重入返回ture
        
        return false;//没有获取资源返回false
    

Thread-1获取了锁资源,没有释放。

2、Thread-2,开始请求资源,调用lock,此时锁资源还被Thread-1占用

技术图片

addWaiter方法:

private Node addWaiter(Node mode) 
        //把当前线程包装成节点,准备放入等待队列
        Node node = new Node(Thread.currentThread(), mode);
        // Try the fast path of enq; backup to full enq on failure
        //尝试直接把节点设置成队尾,否则执行enq
        Node pred = tail;
        if (pred != null) 
            node.prev = pred;//当前节点的上一个节点是之前的队尾节点
            if (compareAndSetTail(pred, node)) 
                pred.next = node;
                return node;
            
        
        //当前节点插入队尾
        enq(node);
        return node;
    

enq自旋+初始化等待队列,并返回Thread-2节点

private Node enq(final Node node) 
        //采用自旋,保证节点插入
        for (;;) 
            Node t = tail;
            if (t == null)  // Must initialize 如果队列为空,则创建一个空的节点,设置为头尾节点
                if (compareAndSetHead(new Node()))
                    tail = head;
             else 
                node.prev = t;
                if (compareAndSetTail(t, node))  //队列不为空,追加到队尾
                    t.next = node;
                    return t;
                
            
        
    

然后对Thread-2包装节点执行acquireQueued

final boolean acquireQueued(final Node node, int arg) 
        boolean failed = true;
        try 
            boolean interrupted = false;
            for (;;) 
                //判断节点的前任节点是不是头节点,头节点是一个空节点
                final Node p = node.predecessor();
                //如果是头节点,则说明当前节点是队列里的第一个节点,首节点。
                //则尝试获取锁资源,此处因为Thread-1占用着资源,则失败
                if (p == head && tryAcquire(arg)) 
                    setHead(node);
                    p.next = null; // help GC
                    failed = false;
                    return interrupted;
                
                //失败之后,则判断当前节点线程Thread-2是不是可以阻塞
                if (shouldParkAfterFailedAcquire(p, node) &&
                        parkAndCheckInterrupt())
                    interrupted = true;
            
         finally 
            if (failed)
                cancelAcquire(node);
        
    

是否阻塞shouldParkAfterFailedAcquire

private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) 
        int ws = pred.waitStatus;//前驱节点的状态
        if (ws == Node.SIGNAL) //如果是SIGNAL,则说明前驱节点状态可以唤醒后继节点,可以阻塞
            /*
             * This node has already set status asking a release
             * to signal it, so it can safely park.
             */
            return true;
        if (ws > 0) 
            /*
             * Predecessor was cancelled. Skip over predecessors and
             * indicate retry.
             */
            do 
                node.prev = pred = pred.prev; //只有CANCELLED状态大于0,则把取消状态的节点从队列删除
             while (pred.waitStatus > 0);
            pred.next = node;
         else 
            /*
             * waitStatus must be 0 or PROPAGATE.  Indicate that we
             * need a signal, but don‘t park yet.  Caller will need to
             * retry to make sure it cannot acquire before parking.
             */
            compareAndSetWaitStatus(pred, ws, Node.SIGNAL);//设置前驱节点为SIGNAL状态
        
        return false;
    

如果可以阻塞,则调用parkAndCheckInterrupt,阻塞线程,至此Thread-2进入队列,并阻塞了,耐心等待

3、Thread-3同Thread-2,略过

4、Thread-1释放锁资源

技术图片

release方法:

技术图片

tryRelease

技术图片

然后通过unparkSuccessor,唤醒首节点,保证公平策略。

至此Thread-1释放完成,Thread-2可以获得资源,依次类推。

以上是关于多线程(十AQS原理-ReentrantLock实现)的主要内容,如果未能解决你的问题,请参考以下文章

AQS-ReentrantLock实现原理

多线程(九AQS原理-简介)

并发和多线程--AbstractQueuedSynchronizer基本原理

从ReentrantLock的实现看AQS的原理及应用

从ReentrantLock的实现看AQS的原理及应用

扒一扒ReentrantLock以及AQS实现原理