tensorflow学习之搭建最简单的神经网络
Posted yqpy
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了tensorflow学习之搭建最简单的神经网络相关的知识,希望对你有一定的参考价值。
这几天在B站看莫烦的视频,学习一波,给出视频地址:https://www.bilibili.com/video/av16001891/?p=22
先放出代码
#####搭建神经网络测试 def add_layer(inputs,in_size,out_size,activation_function=None): Weights = tf.Variable(tf.random_normal([in_size, out_size],dtype=np.float32)) biases = tf.Variable(tf.zeros([1,out_size])+0.1) Wx_plus_b = tf.matmul(inputs, Weights)+biases if activation_function is None: outputs = Wx_plus_b else: outputs = activation_function(Wx_plus_b) return outputs x_data = np.linspace(-1,1,300)[:, np.newaxis] noise = np.random.normal(0,0.05,x_data.shape) y_data = np.square(x_data)-0.5+noise xs = tf.placeholder(tf.float32,[None,1]) ys = tf.placeholder(tf.float32,[None,1]) l1 = add_layer(xs,1,10,activation_function=tf.nn.relu) prediction = add_layer(l1,10,1,activation_function=None) loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction), reduction_indices=[1])) train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss) init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) for i in range(1000): sess.run(train_step,feed_dict=xs:x_data,ys:y_data) if i% 50 ==0: print(sess.run(loss,feed_dict=xs:x_data,ys:y_data)) #####
首先,在add_layer函数中,参数有inputs,in_size,out_size,activation_function=None
其中inupts是输入,in_size是输入维度,out_size是输出维度, activation_function是激活函数
以上是关于tensorflow学习之搭建最简单的神经网络的主要内容,如果未能解决你的问题,请参考以下文章