Hadoop之MapReduce基础

Posted gh-123

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Hadoop之MapReduce基础相关的知识,希望对你有一定的参考价值。

一。MapReduce概念

  Mapreduce是一个分布式运算程序的编程框架,是用户开发“基于hadoop的数据分析应用”的核心框架;

  Mapreduce核心功能是将用户编写的业务逻辑代码和自带默认组件整合成一个完整的分布式运算程序,并发运行在一个hadoop集群上。

1.1 为什么要MapReduce

  1)海量数据在单机上处理因为硬件资源限制,无法胜任

  2)而一旦将单机版程序扩展到集群来分布式运行,将极大增加程序的复杂度和开发难度

  3)引入mapreduce框架后,开发人员可以将绝大部分工作集中在业务逻辑的开发上,而将分布式计算中的复杂性交由框架来处理。

1.2 MapReduce核心思想

技术图片

1)分布式的运算程序往往需要分成至少2个阶段

2)第一个阶段的maptask并发实例,完全并行运行,互不相干

3)第二个阶段的reduce task并发实例互不相干,但是他们的数据依赖于上一个阶段的所有maptask并发实例的输出

4)MapReduce编程模型只能包含一个map阶段和一个reduce阶段,如果用户的业务逻辑非常复杂,那就只能多个mapreduce程序,串行运行

1.3 MapReduce进程

一个完整的mapreduce程序在分布式运行时有三类实例进程:

1)MrAppMaster:负责整个程序的过程调度及状态协调

2)MapTask:负责map阶段的整个数据处理流程

3)ReduceTask:负责reduce阶段的整个数据处理流程

1.4 MapReduce编程规范

用户编写的程序分成三个部分:Mapper,Reducer,Driver(提交运行mr程序的客户端)

1)Mapper阶段

       (1)用户自定义的Mapper要继承自己的父类

       (2)Mapper的输入数据是KV对的形式(KV的类型可自定义)

       (3)Mapper中的业务逻辑写在map()方法中

       (4)Mapper的输出数据是KV对的形式(KV的类型可自定义)

       (5)map()方法(maptask进程)对每一个<K,V>调用一次

2)Reducer阶段

       (1)用户自定义的Reducer要继承自己的父类

       (2)Reducer的输入数据类型对应Mapper的输出数据类型,也是KV

       (3)Reducer的业务逻辑写在reduce()方法中

       (4)Reducetask进程对每一组相同k的<k,v>组调用一次reduce()方法

3)Driver阶段

  整个程序需要一个Drvier来进行提交,提交的是一个描述了各种必要信息的job对象

4)案例实操

       详见3.1.1统计一堆文件中单词出现的个数(WordCount案例)

1.5 MapReduce程序运行流程分析

 技术图片

1)在MapReduce程序读取文件的输入目录上存放相应的文件。

2)客户端程序在submit()方法执行前,获取待处理的数据信息,然后根据集群中参数的配置形成一个任务分配规划。

3)客户端提交job.split、jar包、job.xml等文件给yarn,yarn中的resourcemanager启动MRAppMaster。

4)MRAppMaster启动后根据本次job的描述信息,计算出需要的maptask实例数量,然后向集群申请机器启动相应数量的maptask进程。

5)maptask利用客户指定的inputformat来读取数据,形成输入KV对。

6)maptask将输入KV对传递给客户定义的map()方法,做逻辑运算

7)map()运算完毕后将KV对收集到maptask缓存。

8)maptask缓存中的KV对按照K分区排序后不断写到磁盘文件

9)MRAppMaster监控到所有maptask进程任务完成之后,会根据客户指定的参数启动相应数量的reducetask进程,并告知reducetask进程要处理的数据分区。

10)Reducetask进程启动之后,根据MRAppMaster告知的待处理数据所在位置,从若干台maptask运行所在机器上获取到若干个maptask输出结果文件,并在本地进行重新归并排序,然后按照相同key的KV为一个组,调用客户定义的reduce()方法进行逻辑运算。

11)Reducetask运算完毕后,调用客户指定的outputformat将结果数据输出到外部存储。

二。MapReduce理论篇

2.1 Writable序列化

  序列化就是把内存中的对象,转换成字节序列(或其他数据传输协议)以便于存储(持久化)和网络传输。 

  反序列化就是将收到字节序列(或其他数据传输协议)或者是硬盘的持久化数据,转换成内存中的对象。

  Java的序列化是一个重量级序列化框架(Serializable),一个对象被序列化后,会附带很多额外的信息(各种校验信息,header,继承体系等),不便于在网络中高效传输。所以,hadoop自己开发了一套序列化机制(Writable),精简、高效。

2.1.1 常用数据序列化类型

常用的数据类型对应的hadoop数据序列化类型

Java类型

Hadoop Writable类型

boolean

BooleanWritable

byte

ByteWritable

int

IntWritable

float

FloatWritable

long

LongWritable

double

DoubleWritable

string

Text

map

MapWritable

array

ArrayWritable

2.1.2 自定义bean对象实现序列化接口

1)自定义bean对象要想序列化传输,必须实现序列化接口,需要注意以下7项。

(1)必须实现Writable接口

(2)反序列化时,需要反射调用空参构造函数,所以必须有空参构造

(3)重写序列化方法

(4)重写反序列化方法

(5)注意反序列化的顺序和序列化的顺序完全一致

(6)要想把结果显示在文件中,需要重写toString(),且用”\\t”分开,方便后续用

(7)如果需要将自定义的bean放在key中传输,则还需要实现comparable接口,因为mapreduce框中的shuffle过程一定会对key进行排序

// 1 必须实现Writable接口
public class FlowBean implements Writable 

    private long upFlow;
    private long downFlow;
    private long sumFlow;

    //2 反序列化时,需要反射调用空参构造函数,所以必须有
    public FlowBean() 
        super();
    

    /**
     * 3重写序列化方法
     * 
     * @param out
     * @throws IOException
     */
    @Override
    public void write(DataOutput out) throws IOException 
        out.writeLong(upFlow);
        out.writeLong(downFlow);
        out.writeLong(sumFlow);
    

    /**
     * 4 重写反序列化方法 
5 注意反序列化的顺序和序列化的顺序完全一致
     * 
     * @param in
     * @throws IOException
     */
    @Override
    public void readFields(DataInput in) throws IOException 
        upFlow = in.readLong();
        downFlow = in.readLong();
        sumFlow = in.readLong();
    

    // 6要想把结果显示在文件中,需要重写toString(),且用”\\t”分开,方便后续用
    @Override
    public String toString() 
        return upFlow + "\\t" + downFlow + "\\t" + sumFlow;
    

    //7 如果需要将自定义的bean放在key中传输,则还需要实现comparable接口,因为mapreduce框中的shuffle过程一定会对key进行排序
    @Override
    public int compareTo(FlowBean o) 
        // 倒序排列,从大到小
        return this.sumFlow > o.getSumFlow() ? -1 : 1;
    

2)案例

  详见3.2.1统计每一个手机号耗费的总上行流量、下行流量、总流量(序列化)。

2.2 InputFormat数据切片机制

2.2.1 FileInputFormat切片机制

1)job提交流程源码详解

waitForCompletion()
submit();
// 1建立连接
    connect();    
        // 1)创建提交job的代理
        new Cluster(getConfiguration());
            // (1)判断是本地yarn还是远程
            initialize(jobTrackAddr, conf); 
    // 2 提交job
submitter.submitJobInternal(Job.this, cluster)
    // 1)创建给集群提交数据的Stag路径
    Path jobStagingArea = JobSubmissionFiles.getStagingDir(cluster, conf);
    // 2)获取jobid ,并创建job路径
    JobID jobId = submitClient.getNewJobID();
    // 3)拷贝jar包到集群
copyAndConfigureFiles(job, submitJobDir);    
    rUploader.uploadFiles(job, jobSubmitDir);
// 4)计算切片,生成切片规划文件
writeSplits(job, submitJobDir);
    maps = writeNewSplits(job, jobSubmitDir);
        input.getSplits(job);
// 5)向Stag路径写xml配置文件
writeConf(conf, submitJobFile);
    conf.writeXml(out);
// 6)提交job,返回提交状态
status = submitClient.submitJob(jobId, submitJobDir.toString(), job.getCredentials());

技术图片

2)FileInputFormat源码解析(input.getSplits(job))

  (1)找到你数据存储的目录。

       (2)开始遍历处理(规划切片)目录下的每一个文件

       (3)遍历第一个文件ss.txt

              a)获取文件大小fs.sizeOf(ss.txt);

              b)计算切片大小computeSliteSize(Math.max(minSize,Math.max(maxSize,blocksize)))=blocksize=128M

    c)默认情况下,切片大小=blocksize

              d)开始切,形成第1个切片:ss.txt—0:128M 第2个切片ss.txt—128:256M 第3个切片ss.txt—256M:300M(每次切片时,都要判断切完剩下的部分是否大于块的1.1倍,不大于1.1倍就划分一块切片)

              e)将切片信息写到一个切片规划文件中

              f)整个切片的核心过程在getSplit()方法中完成。

    g)数据切片只是在逻辑上对输入数据进行分片,并不会再磁盘上将其切分成分片进行存储。InputSplit只记录了分片的元数据信息,比如起始位置、长度以及所在的节点列表等。

    h)注意:block是HDFS上物理上存储的存储的数据,切片是对数据逻辑上的划分。

       (4)提交切片规划文件到yarn上,yarn上的MrAppMaster就可以根据切片规划文件计算开启maptask个数。

3)FileInputFormat中默认的切片机制:

  (1)简单地按照文件的内容长度进行切片

  (2)切片大小,默认等于block大小

  (3)切片时不考虑数据集整体,而是逐个针对每一个文件单独切片

  比如待处理数据有两个文件:

file1.txt    320M
file2.txt    10M

  经过FileInputFormat的切片机制运算后,形成的切片信息如下:

file1.txt.split1--  0~128
file1.txt.split2--  128~256
file1.txt.split3--  256~320
file2.txt.split1--  0~10M

4)FileInputFormat切片大小的参数配置

  (1)通过分析源码,在FileInputFormat中,计算切片大小的逻辑:Math.max(minSize, Math.min(maxSize, blockSize)); 

  切片主要由这几个值来运算决定

  mapreduce.input.fileinputformat.split.minsize=1 默认值为1

  mapreduce.input.fileinputformat.split.maxsize= Long.MAXValue 默认值Long.MAXValue

  因此,默认情况下,切片大小=blocksize。

  maxsize(切片最大值):参数如果调得比blocksize小,则会让切片变小,而且就等于配置的这个参数的值。

  minsize (切片最小值):参数调的比blockSize大,则可以让切片变得比blocksize还大。

5)获取切片信息API

// 根据文件类型获取切片信息
FileSplit inputSplit = (FileSplit) context.getInputSplit();
// 获取切片的文件名称
String name = inputSplit.getPath().getName();

2.2.2 CombineTextInputFormat切片机制

关于大量小文件的优化策略

  1)默认情况下TextInputformat对任务的切片机制是按文件规划切片,不管文件多小,都会是一个单独的切片,都会交给一个maptask,这样如果有大量小文件,就会产生大量的maptask,处理效率极其低下。

  2)优化策略

         (1)最好的办法,在数据处理系统的最前端(预处理/采集),将小文件先合并成大文件,再上传到HDFS做后续分析。

         (2)补救措施:如果已经是大量小文件在HDFS中了,可以使用另一种InputFormat来做切片(CombineTextInputFormat),它的切片逻辑跟TextFileInputFormat不同:它可以将多个小文件从逻辑上规划到一个切片中,这样,多个小文件就可以交给一个maptask。

         (3)优先满足最小切片大小,不超过最大切片大小

                CombineTextInputFormat.setMaxInputSplitSize(job, 4194304);// 4m

                CombineTextInputFormat.setMinInputSplitSize(job, 2097152);// 2m

         举例:0.5m+1m+0.3m+5m=2m + 4.8m=2m + 4m + 0.8m

3)具体实现步骤

// 9 如果不设置InputFormat,它默认用的是TextInputFormat.class
job.setInputFormatClass(CombineTextInputFormat.class)
CombineTextInputFormat.setMaxInputSplitSize(job, 4194304);// 4m
CombineTextInputFormat.setMinInputSplitSize(job, 2097152);// 2m

4)案例

  详见3.1.4 需求4:大量小文件的切片优化(CombineTextInputFormat)。

2.2.3 自定义InputFormat

1)概述

  (1)自定义一个InputFormat

  (2)改写RecordReader,实现一次读取一个完整文件封装为KV

  (3)在输出时使用SequenceFileOutPutFormat输出合并文件

2)案例

       详见3.5小文件处理(自定义InputFormat)。

2.3 MapTask工作机制

1)问题引出

  maptask的并行度决定map阶段的任务处理并发度,进而影响到整个job的处理速度。那么,mapTask并行任务是否越多越好呢?

2)MapTask并行度决定机制

       一个job的map阶段MapTask并行度(个数),由客户端提交job时的切片个数决定。

3)MapTask工作机制

       (1)Read阶段:Map Task通过用户编写的RecordReader,从输入InputSplit中解析出一个个key/value。

       (2)Map阶段:该节点主要是将解析出的key/value交给用户编写map()函数处理,并产生一系列新的key/value。

       (3)Collect阶段:在用户编写map()函数中,当数据处理完成后,一般会调用OutputCollector.collect()输出结果。在该函数内部,它会将生成的key/value分区(调用Partitioner),并写入一个环形内存缓冲区中。

       (4)Spill阶段:即“溢写”,当环形缓冲区满后,MapReduce会将数据写到本地磁盘上,生成一个临时文件。需要注意的是,将数据写入本地磁盘之前,先要对数据进行一次本地排序,并在必要时对数据进行合并、压缩等操作。

       溢写阶段详情:

       步骤1:利用快速排序算法对缓存区内的数据进行排序,排序方式是,先按照分区编号partition进行排序,然后按照key进行排序。这样,经过排序后,数据以分区为单位聚集在一起,且同一分区内所有数据按照key有序。

       步骤2:按照分区编号由小到大依次将每个分区中的数据写入任务工作目录下的临时文件output/spillN.out(N表示当前溢写次数)中。如果用户设置了Combiner,则写入文件之前,对每个分区中的数据进行一次聚集操作。

       步骤3:将分区数据的元信息写到内存索引数据结构SpillRecord中,其中每个分区的元信息包括在临时文件中的偏移量、压缩前数据大小和压缩后数据大小。如果当期内存索引大小超过1MB,则将内存索引写到文件output/spillN.out.index中。

       (5)Combine阶段:当所有数据处理完成后,MapTask对所有临时文件进行一次合并,以确保最终只会生成一个数据文件。

       当所有数据处理完后,MapTask会将所有临时文件合并成一个大文件,并保存到文件output/file.out中,同时生成相应的索引文件output/file.out.index。

       在进行文件合并过程中,MapTask以分区为单位进行合并。对于某个分区,它将采用多轮递归合并的方式。每轮合并io.sort.factor(默认100)个文件,并将产生的文件重新加入待合并列表中,对文件排序后,重复以上过程,直到最终得到一个大文件。

       让每个MapTask最终只生成一个数据文件,可避免同时打开大量文件和同时读取大量小文件产生的随机读取带来的开销。

2.4 Shuffle机制

2.4.1 Shuffle机制

  Mapreduce确保每个reducer的输入都是按键排序的。系统执行排序的过程(即将map输出作为输入传给reducer)称为shuffle。

技术图片

2.4.2 MapReduce工作流程

1)流程示意图

技术图片

技术图片

2)流程详解

  上面的流程是整个mapreduce最全工作流程,但是shuffle过程只是从第7步开始到第16步结束,具体shuffle过程详解,如下:

  1)maptask收集我们的map()方法输出的kv对,放到内存缓冲区中

  2)从内存缓冲区不断溢出本地磁盘文件,可能会溢出多个文件

  3)多个溢出文件会被合并成大的溢出文件

  4)在溢出过程中,及合并的过程中,都要调用partitoner进行分组和针对key进行排序

  5)reducetask根据自己的分区号,去各个maptask机器上取相应的结果分区数据

  6)reducetask会取到同一个分区的来自不同maptask的结果文件,reducetask会将这些文件再进行合并(归并排序)

  7)合并成大文件后,shuffle的过程也就结束了,后面进入reducetask的逻辑运算过程(从文件中取出一个一个的键值对group,调用用户自定义的reduce()方法)

3)注意

  Shuffle中的缓冲区大小会影响到mapreduce程序的执行效率,原则上说,缓冲区越大,磁盘io的次数越少,执行速度就越快。

  缓冲区的大小可以通过参数调整,参数:io.sort.mb  默认100M

2.4.3 partition分区

0)问题引出:要求将统计结果按照条件输出到不同文件中(分区)。比如:将统计结果按照手机归属地不同省份输出到不同文件中(分区)

1)默认partition分区

public class HashPartitioner<K, V> extends Partitioner<K, V> 
  /** Use @link Object#hashCode() to partition. */
  public int getPartition(K key, V value, int numReduceTasks) 
    return (key.hashCode() & Integer.MAX_VALUE) % numReduceTasks;
  

  默认分区是根据key的hashCode对reduceTasks个数取模得到的。用户没法控制哪个key存储到哪个分区

2)自定义Partitioner步骤

       (1)自定义类继承Partitioner,重新getPartition()方法

    public class ProvincePartitioner extends Partitioner<Text, FlowBean> 
    @Override
    public int getPartition(Text key, FlowBean value, int numPartitions) 
// 1 获取电话号码的前三位
        String preNum = key.toString().substring(0, 3);
        
        int partition = 4;
        
        // 2 判断是哪个省
        if ("136".equals(preNum)) 
            partition = 0;
        else if ("137".equals(preNum)) 
            partition = 1;
        else if ("138".equals(preNum)) 
            partition = 2;
        else if ("139".equals(preNum)) 
            partition = 3;
        
        return partition;
    

  (2)在job驱动中,设置自定义partitioner:

job.setPartitionerClass(CustomPartitioner.class)

  (3)自定义partition后,要根据自定义partitioner的逻辑设置相应数量的reduce task

job.setNumReduceTasks(5);

3)注意:

  如果reduceTask的数量> getPartition的结果数,则会多产生几个空的输出文件part-r-000xx;

  如果1<reduceTask的数量<getPartition的结果数,则有一部分分区数据无处安放,会Exception;

  如果reduceTask的数量=1,则不管mapTask端输出多少个分区文件,最终结果都交给这一个reduceTask,最终也就只会产生一个结果文件 part-r-00000;

         例如:假设自定义分区数为5,则

    (1)job.setNumReduceTasks(1);会正常运行,只不过会产生一个输出文件

    (2)job.setNumReduceTasks(2);会报错

    (3)job.setNumReduceTasks(6);大于5,程序会正常运行,会产生空文件

4)案例

  详见3.2.2 需求2:将统计结果按照手机归属地不同省份输出到不同文件中(Partitioner)

  详见3.1.2 需求2:把单词按照ASCII码奇偶分区(Partitioner)

2.4.4 排序

  排序是MapReduce框架中最重要的操作之一。Map Task和Reduce Task均会对数据(按照key)进行排序。该操作属于Hadoop的默认行为。任何应用程序中的数据均会被排序,而不管逻辑上是否需要。

       对于Map Task,它会将处理的结果暂时放到一个缓冲区中,当缓冲区使用率达到一定阈值后,再对缓冲区中的数据进行一次排序,并将这些有序数据写到磁盘上,而当数据处理完毕后,它会对磁盘上所有文件进行一次合并,以将这些文件合并成一个大的有序文件。

       对于Reduce Task,它从每个Map Task上远程拷贝相应的数据文件,如果文件大小超过一定阈值,则放到磁盘上,否则放到内存中。如果磁盘上文件数目达到一定阈值,则进行一次合并以生成一个更大文件;如果内存中文件大小或者数目超过一定阈值,则进行一次合并后将数据写到磁盘上。当所有数据拷贝完毕后,Reduce Task统一对内存和磁盘上的所有数据进行一次合并。

每个阶段的默认排序

1)排序的分类:

       (1)部分排序:

MapReduce根据输入记录的键对数据集排序。保证输出的每个文件内部排序。

       (2)全排序:

如何用Hadoop产生一个全局排序的文件?最简单的方法是使用一个分区。但该方法在处理大型文件时效率极低,因为一台机器必须处理所有输出文件,从而完全丧失了MapReduce所提供的并行架构。

       替代方案:首先创建一系列排好序的文件;其次,串联这些文件;最后,生成一个全局排序的文件。主要思路是使用一个分区来描述输出的全局排序。例如:可以为上述文件创建3个分区,在第一分区中,记录的单词首字母a-g,第二分区记录单词首字母h-n, 第三分区记录单词首字母o-z。

  (3)辅助排序:(GroupingComparator分组)

       Mapreduce框架在记录到达reducer之前按键对记录排序,但键所对应的值并没有被排序。甚至在不同的执行轮次中,这些值的排序也不固定,因为它们来自不同的map任务且这些map任务在不同轮次中完成时间各不相同。一般来说,大多数MapReduce程序会避免让reduce函数依赖于值的排序。但是,有时也需要通过特定的方法对键进行排序和分组等以实现对值的排序。

2)自定义排序WritableComparable

  (1)原理分析

  bean对象实现WritableComparable接口重写compareTo方法,就可以实现排序

@Override
public int compareTo(FlowBean o) 
    // 倒序排列,从大到小
    return this.sumFlow > o.getSumFlow() ? -1 : 1;

  (2)案例

    详见3.2.3 需求3:将统计结果按照总流量倒序排序(排序)

2.4.5 GroupingComparator分组

  1)对reduce阶段的数据根据某一个或几个字段进行分组。

  2)案例

    详见3.3 求出每一个订单中最贵的商品(GroupingComparator)

2.4.6 Combiner合并

  1)combiner是MR程序中Mapper和Reducer之外的一种组件

  2)combiner组件的父类就是Reducer

  3)combiner和reducer的区别在于运行的位置:

    Combiner是在每一个maptask所在的节点运行

    Reducer是接收全局所有Mapper的输出结果;

  4)combiner的意义就是对每一个maptask的输出进行局部汇总,以减小网络传输量

  5)自定义Combiner实现步骤:

  (1)自定义一个combiner继承Reducer,重写reduce方法

public class WordcountCombiner extends Reducer<Text, IntWritable, Text, IntWritable>
    @Override
    protected void reduce(Text key, Iterable<IntWritable> values,
            Context context) throws IOException, InterruptedException 
        int count = 0;
        for(IntWritable v :values)
            count = v.get();
        
        context.write(key, new IntWritable(count));
    

  (2)在job中设置:

job.setCombinerClass(WordcountCombiner.class);

  6)combiner能够应用的前提是不能影响最终的业务逻辑,而且,combiner的输出kv应该跟reducer的输入kv类型要对应起来

    Mapper

    3 5 7 ->(3+5+7)/3=5

    2 6 ->(2+6)/2=4

    Reducer

    (3+5+7+2+6)/5=23/5    不等于    (5+4)/2=9/2

  7)案例

    详见3.1.3需求3:对每一个maptask的输出局部汇总(Combiner)

2.4.7 数据倾斜&Distributedcache

1)数据倾斜原因

  如果是多张表的操作都是在reduce阶段完成,reduce端的处理压力太大,map节点的运算负载则很低,资源利用率不高,且在reduce阶段极易产生数据倾斜。

2)案例:

  详见3.4.1 需求1:reduce端表合并(数据倾斜)

3)解决方案

  在map端缓存多张表,提前处理业务逻辑,这样增加map端业务,减少reduce端数据的压力,尽可能的减少数据倾斜。

4)具体办法:采用distributedcache

       (1)在mapper的setup阶段,将文件读取到缓存集合中

       (2)在驱动函数中加载缓存。

    job.addCacheFile(new URI("file:/e:/mapjoincache/pd.txt"));// 缓存普通文件到task运行节点

5)案例:

  详见3.4.2需求2:map端表合并(Distributedcache)

2.5 ReduceTask工作机制

1)设置ReduceTask

  reducetask的并行度同样影响整个job的执行并发度和执行效率,但与maptask的并发数由切片数决定不同,Reducetask数量的决定是可以直接手动设置:

//默认值是1,手动设置为4
job.setNumReduceTasks(4);

2)注意

  (1)如果数据分布不均匀,就有可能在reduce阶段产生数据倾斜

  (2)reducetask数量并不是任意设置,还要考虑业务逻辑需求,有些情况下,需要计算全局汇总结果,就只能有1个reducetask。

  (3)具体多少个reducetask,需要根据集群性能而定。

  (4)如果分区数不是1,但是reducetask为1,是否执行分区过程。答案是:不执行分区过程。因为在maptask的源码中,执行分区的前提是先判断reduceNum个数是否大于1。不大于1肯定不执行。

4)ReduceTask工作机制

       (1)Copy阶段:ReduceTask从各个MapTask上远程拷贝一片数据,并针对某一片数据,如果其大小超过一定阈值,则写到磁盘上,否则直接放到内存中。

       (2)Merge阶段:在远程拷贝数据的同时,ReduceTask启动了两个后台线程对内存和磁盘上的文件进行合并,以防止内存使用过多或磁盘上文件过多。

       (3)Sort阶段:按照MapReduce语义,用户编写reduce()函数输入数据是按key进行聚集的一组数据。为了将key相同的数据聚在一起,Hadoop采用了基于排序的策略。由于各个MapTask已经实现对自己的处理结果进行了局部排序,因此,ReduceTask只需对所有数据进行一次归并排序即可。

       (4)Reduce阶段:reduce()函数将计算结果写到HDFS上。

2.6 自定义OutputFormat

1)概述

  (1)要在一个mapreduce程序中根据数据的不同输出两类结果到不同目录,这类灵活的输出需求可以通过自定义outputformat来实现。

  (1)自定义outputformat,

  (2)改写recordwriter,具体改写输出数据的方法write()

2)案例:

   详见3.6 修改日志内容及自定义日志输出路径(自定义OutputFormat)。

2.7 MapReduce数据压缩

2.7.1 概述

  压缩技术能够有效减少底层存储系统(HDFS)读写字节数。压缩提高了网络带宽和磁盘空间的效率。在Hadood下,尤其是数据规模很大和工作负载密集的情况下,使用数据压缩显得非常重要。在这种情况下,I/O操作和网络数据传输要花大量的时间。还有,Shuffle与Merge过程同样也面临着巨大的I/O压力。

       鉴于磁盘I/O和网络带宽是Hadoop的宝贵资源,数据压缩对于节省资源、最小化磁盘I/O和网络传输非常有帮助。不过,尽管压缩与解压操作的CPU开销不高,其性能的提升和资源的节省并非没有代价。

       如果磁盘I/O和网络带宽影响了MapReduce作业性能,在任意MapReduce阶段启用压缩都可以改善端到端处理时间并减少I/O和网络流量。

  压缩mapreduce的一种优化策略:通过压缩编码对mapper或者reducer的输出进行压缩,以减少磁盘IO提高MR程序运行速度(但相应增加了cpu运算负担)

  注意:压缩特性运用得当能提高性能,但运用不当也可能降低性能

  基本原则:

  (1)运算密集型的job,少用压缩

  (2)IO密集型的job,多用压缩

2.7.2 MR支持的压缩编码

技术图片

为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器,如下表所示

技术图片

压缩性能的比较

技术图片

2.7.3 采用压缩的位置

  压缩可以在MapReduce作用的任意阶段启用。

技术图片

1)输入压缩:

       在有大量数据并计划重复处理的情况下,应该考虑对输入进行压缩。然而,你无须显示指定使用的编解码方式。Hadoop自动检查文件扩展名,如果扩展名能够匹配,就会用恰当的编解码方式对文件进行压缩和解压。否则,Hadoop就不会使用任何编解码器。

2)压缩mapper输出:

  当map任务输出的中间数据量很大时,应考虑在此阶段采用压缩技术。这能显著改善内部数据Shuffle过程,而Shuffle过程在Hadoop处理过程中是资源消耗最多的环节。如果发现数据量大造成网络传输缓慢,应该考虑使用压缩技术。可用于压缩mapper输出的快速编解码器包括LZO、LZ4或者Snappy。

  注:LZO是供Hadoop压缩数据用的通用压缩编解码器。其设计目标是达到与硬盘读取速度相当的压缩速度,因此速度是优先考虑的因素,而不是压缩率。与gzip编解码器相比,它的压缩速度是gzip的5倍,而解压速度是gzip的2倍。同一个文件用LZO压缩后比用gzip压缩后大50%,但比压缩前小25%~50%。这对改善性能非常有利,map阶段完成时间快4倍。

3)压缩reducer输出:

       在此阶段启用压缩技术能够减少要存储的数据量,因此降低所需的磁盘空间。当mapreduce作业形成作业链条时,因为第二个作业的输入也已压缩,所以启用压缩同样有效。

2.7.4 压缩配置参数

  要在Hadoop中启用压缩,可以配置如下参数(mapred-site.xml文件中):

参数

默认值

阶段

建议

io.compression.codecs  

(在core-site.xml中配置)

org.apache.hadoop.io.compress.DefaultCodec, org.apache.hadoop.io.compress.GzipCodec, org.apache.hadoop.io.compress.BZip2Codec,

org.apache.hadoop.io.compress.Lz4Codec

输入压缩

Hadoop使用文件扩展名判断是否支持某种编解码器

mapreduce.map.output.compress

false

mapper输出

这个参数设为true启用压缩

mapreduce.map.output.compress.codec

org.apache.hadoop.io.compress.DefaultCodec

mapper输出

使用LZO、LZ4或snappy编解码器在此阶段压缩数据

mapreduce.output.fileoutputformat.compress

false

reducer输出

这个参数设为true启用压缩

mapreduce.output.fileoutputformat.compress.codec

org.apache.hadoop.io.compress. DefaultCodec

reducer输出

使用标准工具或者编解码器,如gzip和bzip2

mapreduce.output.fileoutputformat.compress.type

RECORD

reducer输出

SequenceFile输出使用的压缩类型:NONE和BLOCK

2.8 计数器应用

  Hadoop为每个作业维护若干内置计数器,以描述多项指标。例如,某些计数器记录已处理的字节数和记录数,使用户可监控已处理的输入数据量和已产生的输出数据量。

1)API

       (1)采用枚举的方式统计计数

    enum MyCounterMALFORORMED,NORMAL

    //对枚举定义的自定义计数器加1

    context.getCounter(MyCounter.MALFORORMED).increment(1);

  (2)采用计数器组、计数器名称的方式统计

    context.getCounter("counterGroup", "countera").increment(1);

              组名和计数器名称随便起,但最好有意义。

       (3)计数结果在程序运行后的控制台上查看。

2)案例

  详见3.6 修改日志内容及自定义日志输出路径(自定义OutputFormat)。

2.9 数据清洗

1)概述

  在运行Mapreduce程序之前,往往要先对数据进行清洗,清理掉不符合用户要求的数据。清理的过程往往只需要运行mapper程序,不需要运行reduce程序。

2)案例

  详见3.7 日志清洗(数据清洗)。

2.10 MapReduce与Yarn

2.10.1 Yarn概述

  Yarn是一个资源调度平台,负责为运算程序提供服务器运算资源,相当于一个分布式的操作系统平台,而mapreduce等运算程序则相当于运行于操作系统之上的应用程序

2.10.2 Yarn的重要概念

  1)Yarn并不清楚用户提交的程序的运行机制

  2)Yarn只提供运算资源的调度(用户程序向Yarn申请资源,Yarn就负责分配资源)

  3)Yarn中的主管角色叫ResourceManager

  4)Yarn中具体提供运算资源的角色叫NodeManager

  5)这样一来,Yarn其实就与运行的用户程序完全解耦,就意味着Yarn上可以运行各种类型的分布式运算程序(mapreduce只是其中的一种),比如mapreduce、storm程序,spark程序……

  6)所以,spark、storm等运算框架都可以整合在Yarn上运行,只要他们各自的框架中有符合Yarn规范的资源请求机制即可

  7)Yarn就成为一个通用的资源调度平台,从此,企业中以前存在的各种运算集群都可以整合在一个物理集群上,提高资源利用率,方便数据共享

2.10.3 Yarn工作机制

1)Yarn运行机制

技术图片

2)工作机制详解

       (0)Mr程序提交到客户端所在的节点

       (1)yarnrunner向Resourcemanager申请一个application。

       (2)rm将该应用程序的资源路径返回给yarnrunner

       (3)该程序将运行所需资源提交到HDFS上

       (4)程序资源提交完毕后,申请运行mrAppMaster

       (5)RM将用户的请求初始化成一个task

       (6)其中一个NodeManager领取到task任务。

       (7)该NodeManager创建容器Container,并产生MRAppmaster

       (8)Container从HDFS上拷贝资源到本地

       (9)MRAppmaster向RM 申请运行maptask容器

       (10)RM将运行maptask任务分配给另外两个NodeManager,另两个NodeManager分别领取任务并创建容器。

       (11)MR向两个接收到任务的NodeManager发送程序启动脚本,这两个NodeManager分别启动maptask,maptask对数据分区排序。

       (12)MRAppmaster向RM申请2个容器,运行reduce task。

       (13)reduce task向maptask获取相应分区的数据。

       (14)程序运行完毕后,MR会向RM注销自己。

2.11 作业提交全过程

2.12 MapReduce开发总结

  mapreduce在编程的时候,基本上一个固化的模式,没有太多可灵活改变的地方,除了以下几处:

1)输入数据接口:InputFormat--->FileInputFormat(文件类型数据读取的通用抽象类)  DBInputFormat (数据库数据读取的通用抽象类)

    默认使用的实现类是:TextInputFormat

    job.setInputFormatClass(TextInputFormat.class)

    TextInputFormat的功能逻辑是:一次读一行文本,然后将该行的起始偏移量作为key,行内容作为value返回

2)逻辑处理接口: Mapper 

    完全需要用户自己去实现其中:map()   setup()   clean()

3)map输出的结果在shuffle阶段会被partition以及sort,此处有两个接口可自定义:

    (1)Partitioner

         有默认实现 HashPartitioner,逻辑是  根据key和numReduces来返回一个分区号; key.hashCode()&Integer.MAXVALUE % numReduces

         通常情况下,用默认的这个HashPartitioner就可以,如果业务上有特别的需求,可以自定义

       (2)Comparable

         当我们用自定义的对象作为key来输出时,就必须要实现WritableComparable接口,override其中的compareTo()方法

4)reduce端的数据分组比较接口:Groupingcomparator

       reduceTask拿到输入数据(一个partition的所有数据)后,首先需要对数据进行分组,其分组的默认原则是key相同,然后对每一组kv数据调用一次reduce()方法,并且将这一组kv中的第一个kv的key作为参数传给reduce的key,将这一组数据的value的迭代器传给reduce()的values参数

       利用上述这个机制,我们可以实现一个高效的分组取最大值的逻辑:

       自定义一个bean对象用来封装我们的数据,然后改写其compareTo方法产生倒序排序的效果

       然后自定义一个Groupingcomparator,将bean对象的分组逻辑改成按照我们的业务分组id来分组(比如订单号)

       这样,我们要取的最大值就是reduce()方法中传进来key

5)逻辑处理接口:Reducer

       完全需要用户自己去实现其中  reduce()   setup()   clean()   

6)输出数据接口:OutputFormat---> 有一系列子类FileOutputformat  DBoutputFormat  .....

       默认实现类是TextOutputFormat,功能逻辑是:将每一个KV对向目标文本文件中输出为一行

2.13 MapReduce参数优化

2.13.1 资源相关参数

1)以下参数是在用户自己的mr应用程序中配置就可以生效

技术图片

2)应该在yarn启动之前就配置在服务器的配置文件中才能生效

配置参数

参数说明

yarn.scheduler.minimum-allocation-mb   1024

给应用程序container分配的最小内存

yarn.scheduler.maximum-allocation-mb   8192

给应用程序container分配的最大内存

yarn.scheduler.minimum-allocation-vcores   1

 

yarn.scheduler.maximum-allocation-vcores  32

 

yarn.nodemanager.resource.memory-mb   8192

 

3)shuffle性能优化的关键参数,应在yarn启动之前就配置好

配置参数

参数说明

mapreduce.task.io.sort.mb   100

shuffle的环形缓冲区大小,默认100m

mapreduce.map.sort.spill.percent   0.8

环形缓冲区溢出的阈值,默认80%

2.13.2 容错相关参数

配置参数

参数说明

mapreduce.map.maxattempts

每个Map Task最大重试次数,一旦重试参数超过该值,则认为Map Task运行失败,默认值:4。

mapreduce.reduce.maxattempts

每个Reduce Task最大重试次数,一旦重试参数超过该值,则认为Map Task运行失败,默认值:4。

mapreduce.map.failures.maxpercent

当失败的Map Task失败比例超过该值为,整个作业则失败,默认值为0. 如果你的应用程序允许丢弃部分输入数据,则该该值设为一个大于0的值,比如5,表示如果有低于5%的Map Task失败(如果一个Map Task重试次数超过mapreduce.map.maxattempts,则认为这个Map Task失败,其对应的输入数据将不会产生任何结果),整个作业扔认为成功。

mapreduce.reduce.failures.maxpercent

当失败的Reduce Task失败比例超过该值为,整个作业则失败,默认值为0。

mapreduce.task.timeout

Task超时时间,经常需要设置的一个参数,该参数表达的意思为:如果一个task在一定时间内没有任何进入,即不会读取新的数据,也没有输出数据,则认为该task处于block状态,可能是卡住了,也许永远会卡主,为了防止因为用户程序永远block住不退出,则强制设置了一个该超时时间(单位毫秒),默认是300000。如果你的程序对每条输入数据的处理时间过长(比如会访问数据库,通过网络拉取数据等),建议将该参数调大,该参数过小常出现的错误提示是“AttemptID:attempt_14267829456721_123456_m_000224_0 Timed out after 300 secsContainer killed by the ApplicationMaster.”。

三。MapReduce实战篇

以上是关于Hadoop之MapReduce基础的主要内容,如果未能解决你的问题,请参考以下文章

hadoop基础之初识Hadoop MapReduce架构

通俗易懂的Spark基础之MapReduce和Hadoop

基础概念 之 Hadoop family

Hadoop之MapReduce程序开发流程

Hadoop之Mapreduce详解

大数据Hadoop之MapReduce