题解[USACO18FEB]New Barns
Posted h-lka
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了题解[USACO18FEB]New Barns 相关的知识,希望对你有一定的参考价值。
浅谈一下对于这题做完之后的感受(不看题解也是敲不出来啊qwq……)
题意翻译
Farmer John注意到他的奶牛们如果被关得太紧就容易吵架,所以他想开放一些新的牛棚来分散她们。 每当FJ建造一个新牛棚的时候,他会将这个牛棚用至多一条双向道路与一个现有的牛棚连接起来。为了确保他的奶牛们足够分散,他有时想要确定从某个特定的牛棚出发,到它能够到达的最远的牛棚的距离(两个牛棚之间的距离等于从一个牛棚出发到另一个之间必须经过的道路条数)。
FJ总共会给出QQ(1 \leq Q \leq 10^51≤Q≤105)次请求,每个请求都是“建造”和“距离”之一。对于一个建造请求,FJ建造一个牛棚,并将其与至多一个现有的牛棚连接起来。对于一个距离请求,FJ向你询问从某个特定的牛棚通过一些道路到离它最远的牛棚的距离。保证询问的牛棚已经被建造。请帮助FJ响应所有的请求。
输入格式(文件名:newbarn.in): 第一行包含一个整数QQ。以下QQ行,每行包含一个请求。每个请求的格式都是“B p”或是“Q k”,分别告诉你建造一个牛棚并与牛棚pp连接,或是根据定义求从牛棚kk出发最远的距离。如果p = -1p=−1,则新的牛棚不会与其他牛棚连接。否则,pp是一个已经建造的牛棚的编号。牛棚编号从11开始,所以第一个被建造的谷仓是11号谷仓,第二个是22号谷仓,以此类推。 输出格式(文件名:newbarn.out): 对于每个距离请求输出一行。注意一个没有连接到其他牛棚的牛棚的最远距离为00。
题目描述
Farmer John notices that his cows tend to get into arguments if they are packed too closely together, so he wants to open a series of new barns to help spread them out. Whenever FJ constructs a new barn, he connects it with at most one bidirectional pathway to an existing barn. In order to make sure his cows are spread sufficiently far apart, he sometimes wants to determine the distance from a certain barn to the farthest possible barn reachable from it (the distance between two barns is the number of paths one must traverse to go from one barn to the other).
FJ will give a total of QQ (1 \leq Q \leq 10^51≤Q≤105) queries, each either of the form "build" or "distance". For a build query, FJ builds a barn and links it with at most one previously built barn. For a distance query, FJ asks you the distance from a certain barn to the farthest barn reachable from it via a series of pathways. It is guaranteed that the queried barn has already been built. Please help FJ answer all of these queries.
输入输出格式
输入格式:
The first line contains the integer QQ. Each of the next QQ lines contains a query. Each query is of the form "B p" or "Q k", respectively telling you to build a barn and connect it with barn pp, or give the farthest distance, as defined, from barn kk. If p = -1p=−1, then the new barn will be connected to no other barn. Otherwise, pp is the index of a barn that has already been built. The barn indices start from 11, so the first barn built is barn 11, the second is barn 22, and so on.
输出格式:
Please write one line of output for each distance query. Note that a barn which is connected to no other barns has farthest distance 00.
解:
题意就是要动态连边(合并一个点和联通块)和求树的直径。
每次找最大距离的时候,分别求点的左右子树的距离取较大者。
每次可以用并查集查询联通块的根。
用一个数组记录每次深度,每次合并更新。
每次查询,split一下,LCT的每个节点的值都是1,那么距离就是sum-1.
用LCT维护区间和&Link操作即可。
代码:
#include<cstdio> #include<iostream> #include<cstring> using namespace std; int n,m,opt,a,b,dis[500000];//dis 保存距离 int bel[500000];//并查集 struct node int fa,ch[2],sum,tag; tr[400000]; struct Node int a,b; s[500000];//本题要求合并一个点和一个联通块,连着俩点保存一下 char cg[3]; inline bool root(int x) int g=tr[x].fa; return !(tr[g].ch[0]==x||tr[g].ch[1]==x); inline void pushup(int x)tr[x].sum=1+tr[tr[x].ch[0]].sum+tr[tr[x].ch[1]].sum; inline void pushr(int x) if(!x)return; swap(tr[x].ch[0],tr[x].ch[1]); tr[x].tag^=1; inline void pushdown(int x) if(tr[x].tag) pushr(tr[x].ch[0]); pushr(tr[x].ch[1]); tr[x].tag=0; inline void push(int x) if(!root(x))push(tr[x].fa); pushdown(x); inline void rotate(int x) int y=tr[x].fa,z=tr[y].fa,k=tr[y].ch[1]==x; if(!root(y))tr[z].ch[tr[z].ch[1]==y]=x; tr[x].fa=z;tr[y].ch[k]=tr[x].ch[k^1]; if(tr[x].ch[k^1])tr[tr[x].ch[k^1]].fa=y; tr[y].fa=x;tr[x].ch[k^1]=y; pushup(y);pushup(x); inline void splay(int x) int y,z; push(x); while(!root(x)) y=tr[x].fa,z=tr[y].fa; if(!root(y))(tr[z].ch[0]==y)^(tr[y].ch[0]==x)?rotate(x):rotate(y); rotate(x); pushup(x); inline void access(int x)for(int y=0;x;y=x,x=tr[x].fa)splay(x);tr[x].ch[1]=y;pushup(x); inline void makeroot(int x) access(x);splay(x);pushr(x); inline void split(int x,int y) makeroot(x); access(y);splay(y); inline void link(int x,int y) makeroot(x);tr[x].fa=y; inline void cut(int x,int y) makeroot(x);access(y);splay(y); if(tr[y].ch[0]!=x||tr[x].ch[1])return; tr[x].fa=tr[y].ch[0]=0; pushup(x); inline int find(int x) return x==bel[x]?x:bel[x]=find(bel[x]); int main() scanf("%d",&n);//其它都是模板qwq…… for(int i=1;i<=n;i++)tr[i].sum=1,bel[i]=i,s[i]=i,i;//初始化 for(int i=1;i<=n;++i) cin>>cg; scanf("%d",&a); if(cg[0]==‘B‘) ++opt; if(a==-1)continue; else int d=find(a); link(opt,a); bel[opt]=d;//并查集更新 split(opt,s[d].a);//每次合并点查询距离 int x1=tr[s[d].a].sum-1; split(opt,s[d].b); int x2=tr[s[d].b].sum-1; if(dis[d]<x1)dis[d]=x1,s[d]=opt,s[d].a;//更新每次的最大距离,一起更新s结构体 if(dis[d]<x2)dis[d]=x2,s[d]=opt,s[d].b; else int d=find(a); split(a,s[d].a);//s是a所连的两个点 int x1=tr[s[d].a].sum-1;//求当前距离,一个点连着两个点,求两次取最大 split(a,s[d].b); int x2=tr[s[d].b].sum-1; printf("%d\n",max(x1,x2));//取最大咯 return 0;//完结撒花~
有不当之处也还请看到的各位dalao指出。
6.13地理中考加油!
以上是关于题解[USACO18FEB]New Barns 的主要内容,如果未能解决你的问题,请参考以下文章
[luogu4264][USACO18FEB]Teleportation
[BZOJ 1652][USACO 06FEB]Treats for the Cows 题解(区间DP)
[USACO20FEB]Equilateral Triangles P 题解