HDU2204Eddy's爱好

Posted wzj-xhjbk

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了HDU2204Eddy's爱好相关的知识,希望对你有一定的参考价值。

题目大意:求从 1 到 N 中共有多少个数可以表示成 \(M^K,K \gt 1\)\(N \le 1e18\)

题解:
发现 N 很大,若直接枚举 M 的话有 1e9 级别的数据量,肯定超时,因此考虑枚举幂次。发现对于幂次为 k 的符合条件的数有 N 开 K 次方下取整个,同时注意到 k 的取值范围最大为 60,因为 2 的 60 次方为 1e18 级别。因此考虑从小到大进行枚举幂次即可,但是发现有些数字会产生重复,如:\((2^3)^2=(2^2)^3=2^6\),即:同一个数字被计入了三次贡献,因此涉及到了容斥原理,即:若幂次的质因子分解为奇数个时累加贡献,反之减去贡献,因此只需对 1-60 中的素数进行容斥操作即可,即:问题转化成了多重集合的组合问题。

代码如下

#include <bits/stdc++.h>
using namespace std;
const int maxn=61;
typedef long long LL;

LL n;
int prime[]=2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61;

void solve()
    LL ans=0;
    int ub=0;
    while((1LL<<prime[ub+1])<=n)++ub;
    for(int i=1;i<1<<ub;i++)
        LL ret=1;
        int cnt=0;
        for(int j=0;j<ub;j++)
            if(i>>j&1)
                ++cnt,ret*=prime[j];
            
        if(cnt&1)ans+=(LL)(pow(n,1.0/ret)+1e-8);
        else ans-=(LL)(pow(n,1.0/ret)+1e-8);
    
    printf("%lld\n",ans+1);

int main()
    while(scanf("%lld",&n)!=EOF)
        solve();
       
    return 0;
 

以上是关于HDU2204Eddy's爱好的主要内容,如果未能解决你的问题,请参考以下文章

hdu2204 Eddy's爱好 打表+容斥原理

HDU2204Eddy's爱好

hdu2204Eddy&#39;s爱好

HDU - 2204 Eddy‘s爱好(尚未完全解决)

HDU 1162 Eddy's picture (最小生成树)(java版)

HDU 1163 Eddy's digital Roots