[CF664A]Complicated GCD(数论)

Posted coding-gaga

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[CF664A]Complicated GCD(数论)相关的知识,希望对你有一定的参考价值。

题目链接

http://codeforces.com/problemset/problem/664/A

题意

给两个数,找出它们的最大公因子d,使得从a到b之间的数都可以整除d.

题解

结论:
当gcd(a, b) = 1,则gcd(a + b, a) = 1
反证法:
假设gcd(a + b, b) = k != 1;
则: b = k * r1
a + b =a +? k * r1 = k * R
两边同时除以k
a / k + r1 = R
则要使相等,则a 必须整除k, 则 a = k * r2;
所以gcd(a, b) = k != 1 与gcd(a, b) = 1矛盾
故假设不成立。

另一种证明思路:
gcd(1,a)=1, gcd(a,a)=a, gcd(a,a+1)=gcd(a,1)=1. ?

代码

import java.util.Scanner;

public class Main 
    public static void main(String args[]) 
        Scanner in=new Scanner(System.in);
        String a=in.next();
        String b=in.next();
        if(a==b) 
            System.out.print(a);
        
        else 
            System.out.print("1");
        
    

以上是关于[CF664A]Complicated GCD(数论)的主要内容,如果未能解决你的问题,请参考以下文章

CF#511-C Enlarge GCD(gcd)

CF 1047 C. Enlarge GCD

CF585E:Present for Vitalik the Philatelist

CF 979D Kuro and GCD and XOR and SUM(异或 Trie)

数论GCD——cf1055C

CF851 D 枚举 思维