numpy.mean

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了numpy.mean相关的知识,希望对你有一定的参考价值。

http://docs.scipy.org/doc/numpy/reference/generated/numpy.mean.html

numpy.mean(aaxis=Nonedtype=Noneout=Nonekeepdims=False)[source]

Compute the arithmetic mean along the specified axis.

Returns the average of the array elements. The average is taken over the flattened array by default, otherwise over the specified axis. float64 intermediate and return values are used for integer inputs.

Parameters:

a : array_like

Array containing numbers whose mean is desired. If a is not an array, a conversion is attempted.

axis : None or int or tuple of ints, optional

Axis or axes along which the means are computed. The default is to compute the mean of the flattened array.

If this is a tuple of ints, a mean is performed over multiple axes, instead of a single axis or all the axes as before.

dtype : data-type, optional

Type to use in computing the mean. For integer inputs, the default is float64; for floating point inputs, it is the same as the input dtype.

out : ndarray, optional

Alternate output array in which to place the result. The default isNone; if provided, it must have the same shape as the expected output, but the type will be cast if necessary. See doc.ufuncs for details.

keepdims : bool, optional

If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the original arr.

Returns:

m : ndarray, see dtype parameter above

If out=None, returns a new array containing the mean values, otherwise a reference to the output array is returned.

See also

average
Weighted average

stdvarnanmeannanstdnanvar

Notes

The arithmetic mean is the sum of the elements along the axis divided by the number of elements.

Note that for floating-point input, the mean is computed using the same precision the input has. Depending on the input data, this can cause the results to be inaccurate, especially for float32 (see example below). Specifying a higher-precision accumulator using the dtype keyword can alleviate this issue.

Examples

>>>
>>> a = np.array([[1, 2], [3, 4]])
>>> np.mean(a)
2.5
>>> np.mean(a, axis=0)
array([ 2.,  3.])
>>> np.mean(a, axis=1)
array([ 1.5,  3.5])

In single precision, mean can be inaccurate:

>>>
>>> a = np.zeros((2, 512*512), dtype=np.float32)
>>> a[0, :] = 1.0
>>> a[1, :] = 0.1
>>> np.mean(a)
0.546875

Computing the mean in float64 is more accurate:

>>>
>>> np.mean(a, dtype=np.float64)
0.55000000074505806

以上是关于numpy.mean的主要内容,如果未能解决你的问题,请参考以下文章

numpy中的mean()函数

Numpynumpy.mean() 的用法

Python - 尝试使用numpy.mean时“无法使用灵活类型执行reduce”

使用vectorise时在python numpy.mean函数中遇到奇怪的问题

python相关性分析如何生成两个相关性最强的两门?

机器学习(线性相关)