动态规划-背包问题
Posted qbits
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了动态规划-背包问题相关的知识,希望对你有一定的参考价值。
0-1背包
N
件物品,背包最大容量为V
, 第i件物品的费用为w[i]
,价值为v[i]
使用f[i][j]
表示在容量为j,在前i件物品中(包括i)选择物品所获得的最大价值
递推方程为f[i][j] = max(f[i-1][j], f[i-1][j - w[i]] + v[i])
在是否选择第i件物品取最大值
从后往前更新就可以使用一维数组简化f[j] = max(f[j], f[j-w[i]] + v[i])
416. Partition Equal Subset Sum
class Solution
public:
bool canPartition(vector<int>& nums)
int sum = accumulate(nums.begin(), nums.end(), 0);
return sum & 1 ? false : subSum(nums, sum >> 1);
bool subSum(vector<int>& nums, int s)
bool dp[s + 1] = false;
dp[0] = true;
for(int n : nums)
for(int i = s; i >=n; i--)
dp[i] = dp [i] || dp[i - n];
return dp[s];
;
完全背包
每种物品无限件, 递推方程为
f[i][v]=max(f[i-1][v-k*c[i]]+k*w[i]|0<=k*c[i]<=v)
322. Coin Change
//超时
class Solution
public:
int coinChange(vector<int>& coins, int amount)
int n = coins.size();
if(amount == 0) return 0;
vector<vector<int>> f(n+1, vector<int>(amount+1, amount + 1));
for(int i = 0; i < n; i++)
f[i][0] = 0;
for(int j = 1; j <= amount; j++)
for(int k = 0; k * coins[i] <= j; k++)
f[i+1][j] = min(f[i+1][j], f[i][j - k * coins[i]] + k);
return f[n][amount] < amount + 1 ? f[n][amount] : -1;
;
优化时间,三重循环变为两重循环, 注意这两重循环可交换
class Solution
public:
int coinChange(vector<int>& coins, int amount)
int n = coins.size();
if(amount == 0) return 0;
vector<vector<int>> f(n+1, vector<int>(amount+1, amount + 1));
for(int i = 0; i <= n; i++) f[i][0] = 0;
for(int j = 1; j <= amount; j++)
for(int i = 0; i < n; i++)
if(j - coins[i] >= 0)
f[i+1][j] = min(f[i][j], f[i+1][j - coins[i]] + 1);
else f[i+1][j] = f[i][j];
return f[n][amount] < amount + 1 ? f[n][amount] : -1;
;
优化空间,二维数组变为一维数组
class Solution
public:
int coinChange(vector<int>& coins, int amount)
int n = coins.size();
if(amount == 0) return 0;
vector<int> f(amount+1, amount + 1);
f[0] = 0;
for(int j = 1; j <= amount; j++)
for(int i = 0; i < n; i++)
if(j - coins[i] >= 0)
f[j] = min(f[j], f[j - coins[i]] + 1);
return f[amount] < amount + 1 ? f[amount] : -1;
;
518. Coin Change 2
做题的时候还是要写个二维的验证一下
class Solution
public:
int change(int amount, vector<int>& coins)
int n = coins.size();
vector<int> dp(amount + 1, 0);
dp[0] = 1;
for(int i = 0; i < n; i++)
for(int j = coins[i]; j <= amount; j++)
dp[j] += dp[j - coins[i]];
// dp[i+1][j] = dp[i][j] + dp[i+1][j - coins[i]]
return dp[amount];
;
多重背包
初始化问题
理解合法状态,要看清题目中说的是正好放满背包,还是最多放满背包
前者对应dp[i][0] = 0, dp[i][j] = INF(j != 0, 不是合法状态)
,后者对应dp[i][0] = 0(全是合法状态)
参考
背包九讲
以上是关于动态规划-背包问题的主要内容,如果未能解决你的问题,请参考以下文章