Hive-压缩和存储
Posted lxl616
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Hive-压缩和存储相关的知识,希望对你有一定的参考价值。
第8章 压缩和存储
8.1 Hadoop源码编译支持Snappy压缩
8.1.1 资源准备
1.CentOS联网
配置CentOS能连接外网。Linux虚拟机ping www.baidu.com 是畅通的
注意:采用root角色编译,减少文件夹权限出现问题
2.jar包准备(hadoop源码、JDK8 、maven、protobuf)
(1)hadoop-2.7.2-src.tar.gz
(2)jdk-8u144-linux-x64.tar.gz
(3)snappy-1.1.3.tar.gz
(4)apache-maven-3.0.5-bin.tar.gz
(5)protobuf-2.5.0.tar.gz
8.1.2 jar包安装
注意:所有操作必须在root用户下完成
1.JDK解压、配置环境变量JAVA_HOME和PATH,验证java-version(如下都需要验证是否配置成功)
[[email protected] software] # tar -zxf jdk-8u144-linux-x64.tar.gz -C /opt/module/
[[email protected] software]# vi /etc/profile
#JAVA_HOME export JAVA_HOME=/opt/module/jdk1.8.0_144 export PATH=$PATH:$JAVA_HOME/bin |
[[email protected] software]#source /etc/profile
验证命令:java -version
2.Maven解压、配置 MAVEN_HOME和PATH
[[email protected] software]# tar -zxvf apache-maven-3.0.5-bin.tar.gz -C /opt/module/
[[email protected] apache-maven-3.0.5]# vi /etc/profile
#MAVEN_HOME export MAVEN_HOME=/opt/module/apache-maven-3.0.5 export PATH=$PATH:$MAVEN_HOME/bin |
[[email protected] software]#source /etc/profile
验证命令:mvn -version
8.1.3 编译源码
1.准备编译环境
[[email protected] software]# yum install svn
[[email protected] software]# yum install autoconf automake libtool cmake
[[email protected] software]# yum install ncurses-devel
[[email protected] software]# yum install openssl-devel
[[email protected] software]# yum install gcc*
2.编译安装snappy
[[email protected] software]# tar -zxvf snappy-1.1.3.tar.gz -C /opt/module/
[[email protected] module]# cd snappy-1.1.3/
[[email protected] snappy-1.1.3]# ./configure
[[email protected] snappy-1.1.3]# make
[[email protected] snappy-1.1.3]# make install
# 查看snappy库文件
[[email protected] snappy-1.1.3]# ls -lh /usr/local/lib |grep snappy
3.编译安装protobuf
[[email protected] software]# tar -zxvf protobuf-2.5.0.tar.gz -C /opt/module/
[[email protected] module]# cd protobuf-2.5.0/
[[email protected] protobuf-2.5.0]# ./configure
[[email protected] protobuf-2.5.0]# make
[[email protected] protobuf-2.5.0]# make install
# 查看protobuf版本以测试是否安装成功
[[email protected] protobuf-2.5.0]# protoc --version
4.编译hadoop native
[[email protected] software]# tar -zxvf hadoop-2.7.2-src.tar.gz
[[email protected] software]# cd hadoop-2.7.2-src/
[[email protected] software]# mvn clean package -DskipTests -Pdist,native -Dtar -Dsnappy.lib=/usr/local/lib -Dbundle.snappy
执行成功后,/opt/software/hadoop-2.7.2-src/hadoop-dist/target/hadoop-2.7.2.tar.gz即为新生成的支持snappy压缩的二进制安装包。
8.2 Hadoop压缩配置
8.2.1 MR支持的压缩编码
表6-8
压缩格式 |
工具 |
算法 |
文件扩展名 |
是否可切分 |
DEFAULT |
无 |
DEFAULT |
.deflate |
否 |
Gzip |
gzip |
DEFAULT |
.gz |
否 |
bzip2 |
bzip2 |
bzip2 |
.bz2 |
是 |
LZO |
lzop |
LZO |
.lzo |
是 |
Snappy |
无 |
Snappy |
.snappy |
否 |
为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器,如下表所示:
表6-9
压缩格式 |
对应的编码/解码器 |
DEFLATE |
org.apache.hadoop.io.compress.DefaultCodec |
gzip |
org.apache.hadoop.io.compress.GzipCodec |
bzip2 |
org.apache.hadoop.io.compress.BZip2Codec |
LZO |
com.hadoop.compression.lzo.LzopCodec |
Snappy |
org.apache.hadoop.io.compress.SnappyCodec |
压缩性能的比较:
表6-10
压缩算法 |
原始文件大小 |
压缩文件大小 |
压缩速度 |
解压速度 |
gzip |
8.3GB |
1.8GB |
17.5MB/s |
58MB/s |
bzip2 |
8.3GB |
1.1GB |
2.4MB/s |
9.5MB/s |
LZO |
8.3GB |
2.9GB |
49.3MB/s |
74.6MB/s |
http://google.github.io/snappy/
On a single core of a Core i7 processor in 64-bit mode, Snappy compresses at about 250 MB/sec or more and decompresses at about 500 MB/sec or more.
8.2.2 压缩参数配置
要在Hadoop中启用压缩,可以配置如下参数(mapred-site.xml文件中):
表6-11
参数 |
默认值 |
阶段 |
建议 |
io.compression.codecs (在core-site.xml中配置) |
org.apache.hadoop.io.compress.DefaultCodec, org.apache.hadoop.io.compress.GzipCodec, org.apache.hadoop.io.compress.BZip2Codec, org.apache.hadoop.io.compress.Lz4Codec |
输入压缩 |
Hadoop使用文件扩展名判断是否支持某种编解码器 |
mapreduce.map.output.compress |
false |
mapper输出 |
这个参数设为true启用压缩 |
mapreduce.map.output.compress.codec |
org.apache.hadoop.io.compress.DefaultCodec |
mapper输出 |
使用LZO、LZ4或snappy编解码器在此阶段压缩数据 |
mapreduce.output.fileoutputformat.compress |
false |
reducer输出 |
这个参数设为true启用压缩 |
mapreduce.output.fileoutputformat.compress.codec |
org.apache.hadoop.io.compress. DefaultCodec |
reducer输出 |
使用标准工具或者编解码器,如gzip和bzip2 |
mapreduce.output.fileoutputformat.compress.type |
RECORD |
reducer输出 |
SequenceFile输出使用的压缩类型:NONE和BLOCK |
8.3 开启Map输出阶段压缩
开启map输出阶段压缩可以减少job中map和Reduce task间数据传输量。具体配置如下:
案例实操:
1.开启hive中间传输数据压缩功能
hive (default)>set hive.exec.compress.intermediate=true;
2.开启mapreduce中map输出压缩功能
hive (default)>set mapreduce.map.output.compress=true;
3.设置mapreduce中map输出数据的压缩方式
hive (default)>set mapreduce.map.output.compress.codec=
org.apache.hadoop.io.compress.SnappyCodec;
4.执行查询语句
hive (default)> select count(ename) name from emp;
8.4 开启Reduce输出阶段压缩
当Hive将输出写入到表中时,输出内容同样可以进行压缩。属性hive.exec.compress.output控制着这个功能。用户可能需要保持默认设置文件中的默认值false,这样默认的输出就是非压缩的纯文本文件了。用户可以通过在查询语句或执行脚本中设置这个值为true,来开启输出结果压缩功能。
案例实操:
1.开启hive最终输出数据压缩功能
hive (default)>set hive.exec.compress.output=true;
2.开启mapreduce最终输出数据压缩
hive (default)>set mapreduce.output.fileoutputformat.compress=true;
3.设置mapreduce最终数据输出压缩方式
hive (default)> set mapreduce.output.fileoutputformat.compress.codec =
org.apache.hadoop.io.compress.SnappyCodec;
4.设置mapreduce最终数据输出压缩为块压缩
hive (default)> set mapreduce.output.fileoutputformat.compress.type=BLOCK;
5.测试一下输出结果是否是压缩文件
hive (default)> insert overwrite local directory
‘/opt/module/datas/distribute-result‘ select * from emp distribute by deptno sort by empno desc;
8.5 文件存储格式
Hive支持的存储数的格式主要有:TEXTFILE 、SEQUENCEFILE、ORC、PARQUET。
8.5.1 列式存储和行式存储
图6-10 列式存储和行式存储
如图6-10所示左边为逻辑表,右边第一个为行式存储,第二个为列式存储。
1.行存储的特点
查询满足条件的一整行数据的时候,列存储则需要去每个聚集的字段找到对应的每个列的值,行存储只需要找到其中一个值,其余的值都在相邻地方,所以此时行存储查询的速度更快。
2.列存储的特点
因为每个字段的数据聚集存储,在查询只需要少数几个字段的时候,能大大减少读取的数据量;每个字段的数据类型一定是相同的,列式存储可以针对性的设计更好的设计压缩算法。
TEXTFILE和SEQUENCEFILE的存储格式都是基于行存储的;
ORC和PARQUET是基于列式存储的。
8.5.2 TextFile格式
默认格式,数据不做压缩,磁盘开销大,数据解析开销大。可结合Gzip、Bzip2使用,但使用Gzip这种方式,hive不会对数据进行切分,从而无法对数据进行并行操作。
8.5.3 Orc格式
Orc (Optimized Row Columnar)是Hive 0.11版里引入的新的存储格式。
如图6-11所示可以看到每个Orc文件由1个或多个stripe组成,每个stripe250MB大小,这个Stripe实际相当于RowGroup概念,不过大小由4MB->250MB,这样应该能提升顺序读的吞吐率。每个Stripe里有三部分组成,分别是Index Data,Row Data,Stripe Footer:
图6-11 Orc格式
1)Index Data:一个轻量级的index,默认是每隔1W行做一个索引。这里做的索引应该只是记录某行的各字段在Row Data中的offset。
2)Row Data:存的是具体的数据,先取部分行,然后对这些行按列进行存储。对每个列进行了编码,分成多个Stream来存储。
3)Stripe Footer:存的是各个Stream的类型,长度等信息。
每个文件有一个File Footer,这里面存的是每个Stripe的行数,每个Column的数据类型信息等;每个文件的尾部是一个PostScript,这里面记录了整个文件的压缩类型以及FileFooter的长度信息等。在读取文件时,会seek到文件尾部读PostScript,从里面解析到File Footer长度,再读FileFooter,从里面解析到各个Stripe信息,再读各个Stripe,即从后往前读。
8.5.4 Parquet格式
Parquet是面向分析型业务的列式存储格式,由Twitter和Cloudera合作开发,2015年5月从Apache的孵化器里毕业成为Apache顶级项目。
Parquet文件是以二进制方式存储的,所以是不可以直接读取的,文件中包括该文件的数据和元数据,因此Parquet格式文件是自解析的。
通常情况下,在存储Parquet数据的时候会按照Block大小设置行组的大小,由于一般情况下每一个Mapper任务处理数据的最小单位是一个Block,这样可以把每一个行组由一个Mapper任务处理,增大任务执行并行度。Parquet文件的格式如图6-12所示。
图6-12 Parquet格式
上图展示了一个Parquet文件的内容,一个文件中可以存储多个行组,文件的首位都是该文件的Magic Code,用于校验它是否是一个Parquet文件,Footer length记录了文件元数据的大小,通过该值和文件长度可以计算出元数据的偏移量,文件的元数据中包括每一个行组的元数据信息和该文件存储数据的Schema信息。除了文件中每一个行组的元数据,每一页的开始都会存储该页的元数据,在Parquet中,有三种类型的页:数据页、字典页和索引页。数据页用于存储当前行组中该列的值,字典页存储该列值的编码字典,每一个列块中最多包含一个字典页,索引页用来存储当前行组下该列的索引,目前Parquet中还不支持索引页。
8.5.5 主流文件存储格式对比实验
从存储文件的压缩比和查询速度两个角度对比。
存储文件的压缩比测试:
- 测试数据
2.TextFile
(1)创建表,存储数据格式为TEXTFILE
create table log_text ( track_time string, url string, session_id string, referer string, ip string, end_user_id string, city_id string ) row format delimited fields terminated by ‘\t‘ stored as textfile ; |
(2)向表中加载数据
hive (default)> load data local inpath ‘/opt/module/datas/log.data‘ into table log_text ; |
(3)查看表中数据大小
hive (default)> dfs -du -h /user/hive/warehouse/log_text; |
18.1 M /user/hive/warehouse/log_text/log.data
3.ORC
(1)创建表,存储数据格式为ORC
create table log_orc( track_time string, url string, session_id string, referer string, ip string, end_user_id string, city_id string ) row format delimited fields terminated by ‘\t‘ stored as orc ; |
(2)向表中加载数据
hive (default)> insert into table log_orc select * from log_text ; |
(3)查看表中数据大小
hive (default)> dfs -du -h /user/hive/warehouse/log_orc/ ; |
2.8 M /user/hive/warehouse/log_orc/000000_0
4.Parquet
(1)创建表,存储数据格式为parquet
create table log_parquet( track_time string, url string, session_id string, referer string, ip string, end_user_id string, city_id string ) row format delimited fields terminated by ‘\t‘ stored as parquet ; |
(2)向表中加载数据
hive (default)> insert into table log_parquet select * from log_text ; |
(3)查看表中数据大小
hive (default)> dfs -du -h /user/hive/warehouse/log_parquet/ ; |
13.1 M /user/hive/warehouse/log_parquet/000000_0
存储文件的压缩比总结:
ORC > Parquet > textFile
存储文件的查询速度测试:
1.TextFile
hive (default)> select count(*) from log_text;
_c0
100000
Time taken: 21.54 seconds, Fetched: 1 row(s)
Time taken: 21.08 seconds, Fetched: 1 row(s)
Time taken: 19.298 seconds, Fetched: 1 row(s)
2.ORC
hive (default)> select count(*) from log_orc;
_c0
100000
Time taken: 20.867 seconds, Fetched: 1 row(s)
Time taken: 22.667 seconds, Fetched: 1 row(s)
Time taken: 18.36 seconds, Fetched: 1 row(s)
3.Parquet
hive (default)> select count(*) from log_parquet;
_c0
100000
Time taken: 22.922 seconds, Fetched: 1 row(s)
Time taken: 21.074 seconds, Fetched: 1 row(s)
Time taken: 18.384 seconds, Fetched: 1 row(s)
存储文件的查询速度总结:查询速度相近。
8.6 存储和压缩结合
8.6.1 修改Hadoop集群具有Snappy压缩方式
1.查看hadoop checknative命令使用
[[email protected] hadoop-2.7.2]$ hadoop
checknative [-a|-h] check native hadoop and compression libraries availability
2.查看hadoop支持的压缩方式
[[email protected] hadoop-2.7.2]$ hadoop checknative
17/12/24 20:32:52 WARN bzip2.Bzip2Factory: Failed to load/initialize native-bzip2 library system-native, will use pure-Java version
17/12/24 20:32:52 INFO zlib.ZlibFactory: Successfully loaded & initialized native-zlib library
Native library checking:
hadoop: true /opt/module/hadoop-2.7.2/lib/native/libhadoop.so
zlib: true /lib64/libz.so.1
snappy: false
lz4: true revision:99
bzip2: false
3.将编译好的支持Snappy压缩的hadoop-2.7.2.tar.gz包导入到hadoop102的/opt/software中
4.解压hadoop-2.7.2.tar.gz到当前路径
[[email protected] software]$ tar -zxvf hadoop-2.7.2.tar.gz
5.进入到/opt/software/hadoop-2.7.2/lib/native路径可以看到支持Snappy压缩的动态链接库
[[email protected] native]$ pwd
/opt/software/hadoop-2.7.2/lib/native
[[email protected] native]$ ll
-rw-r--r--. 1 atguigu atguigu 472950 9月 1 10:19 libsnappy.a
-rwxr-xr-x. 1 atguigu atguigu 955 9月 1 10:19 libsnappy.la
lrwxrwxrwx. 1 atguigu atguigu 18 12月 24 20:39 libsnappy.so -> libsnappy.so.1.3.0
lrwxrwxrwx. 1 atguigu atguigu 18 12月 24 20:39 libsnappy.so.1 -> libsnappy.so.1.3.0
-rwxr-xr-x. 1 atguigu atguigu 228177 9月 1 10:19 libsnappy.so.1.3.0
6.拷贝/opt/software/hadoop-2.7.2/lib/native里面的所有内容到开发集群的/opt/module/hadoop-2.7.2/lib/native路径上
[[email protected] native]$ cp ../native/* /opt/module/hadoop-2.7.2/lib/native/
7.分发集群
[[email protected] lib]$ xsync native/
8.再次查看hadoop支持的压缩类型
[[email protected] hadoop-2.7.2]$ hadoop checknative
17/12/24 20:45:02 WARN bzip2.Bzip2Factory: Failed to load/initialize native-bzip2 library system-native, will use pure-Java version
17/12/24 20:45:02 INFO zlib.ZlibFactory: Successfully loaded & initialized native-zlib library
Native library checking:
hadoop: true /opt/module/hadoop-2.7.2/lib/native/libhadoop.so
zlib: true /lib64/libz.so.1
snappy: true /opt/module/hadoop-2.7.2/lib/native/libsnappy.so.1
lz4: true revision:99
bzip2: false
9.重新启动hadoop集群和hive
8.6.2 测试存储和压缩
官网:https://cwiki.apache.org/confluence/display/Hive/LanguageManual+ORC
ORC存储方式的压缩:
表6-12
Key |
Default |
Notes |
orc.compress |
ZLIB |
high level compression (one of NONE, ZLIB, SNAPPY) |
orc.compress.size |
262,144 |
number of bytes in each compression chunk |
orc.stripe.size |
67,108,864 |
number of bytes in each stripe |
orc.row.index.stride |
10,000 |
number of rows between index entries (must be >= 1000) |
orc.create.index |
true |
whether to create row indexes |
orc.bloom.filter.columns |
"" |
comma separated list of column names for which bloom filter should be created |
orc.bloom.filter.fpp |
0.05 |
false positive probability for bloom filter (must >0.0 and <1.0) |
1.创建一个非压缩的的ORC存储方式
(1)建表语句
create table log_orc_none( track_time string, url string, session_id string, referer string, ip string, end_user_id string, city_id string ) row format delimited fields terminated by ‘\t‘ stored as orc tblproperties ("orc.compress"="NONE"); |
(2)插入数据
hive (default)> insert into table log_orc_none select * from log_text ; |
(3)查看插入后数据
hive (default)> dfs -du -h /user/hive/warehouse/log_orc_none/ ; |
7.7 M /user/hive/warehouse/log_orc_none/000000_0
2.创建一个SNAPPY压缩的ORC存储方式
(1)建表语句
create table log_orc_snappy( track_time string, url string, session_id string, referer string, ip string, end_user_id string, city_id string ) row format delimited fields terminated by ‘\t‘ stored as orc tblproperties ("orc.compress"="SNAPPY"); |
(2)插入数据
hive (default)> insert into table log_orc_snappy select * from log_text ; |
(3)查看插入后数据
hive (default)> dfs -du -h /user/hive/warehouse/log_orc_snappy/ ; |
3.8 M /user/hive/warehouse/log_orc_snappy/000000_0
3.上一节中默认创建的ORC存储方式,导入数据后的大小为
2.8 M /user/hive/warehouse/log_orc/000000_0
比Snappy压缩的还小。原因是orc存储文件默认采用ZLIB压缩。比snappy压缩的小。
4.存储方式和压缩总结
在实际的项目开发当中,hive表的数据存储格式一般选择:orc或parquet。压缩方式一般选择snappy,lzo。
以上是关于Hive-压缩和存储的主要内容,如果未能解决你的问题,请参考以下文章