04 Regularization
Posted qq-1615160629
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了04 Regularization相关的知识,希望对你有一定的参考价值。
Regularization
for Linear Regression and Logistic Regression
Define
- under-fitting
欠拟合(high bias)
- over-fitting
过拟合 (high variance)
:have too many features, fail to generalize(泛化) to new examples.
Addressing over-fitting
- Reduce number of features.
- Manually select which features to keep.
- Model selection algorithm.
- Regularization
- Keep all the features. but reduce magnitude/values of parameters \(\theta_j\).
- Works well when we have a lot of features, each of whitch contributes a bit to predicting \(y\).
Regularized Cost Function
- \[min_\theta \dfrac12m \sum_i=1^m (h_\theta(x^(i)) - y^(i))^2 + \lambda \sum_j=1^n \theta_j^2\]
Regularized Linear Regression
Gradient Descent
\[
\beginalign* & \textRepeat\ \lbrace \newline & \ \ \ \ \theta_0 := \theta_0 - \alpha\ \frac1m\ \sum_i=1^m (h_\theta(x^(i)) - y^(i))x_0^(i) \newline & \ \ \ \ \theta_j := \theta_j - \alpha\ \left[ \left( \frac1m\ \sum_i=1^m (h_\theta(x^(i)) - y^(i))x_j^(i) \right) + \frac\lambdam\theta_j \right] &\ \ \ \ \ \ \ \ \ \ j \in \lbrace 1,2...n\rbrace\newline & \rbrace \endalign*
\]- 等价于
\[
\theta_j := \theta_j(1 - \alpha\frac\lambdam) - \alpha\frac1m \sum_i=1^m(h_\theta(x^(i)) - y^(i))x_j^(i)
\]
- 等价于
Normal Equation
\[
\beginalign*& \theta = \left( X^TX + \lambda \cdot L \right)^-1 X^Ty \newline& \textwhere\ \ L = \beginbmatrix 0 & & & & \newline & 1 & & & \newline & & 1 & & \newline & & & \ddots & \newline & & & & 1 \newline\endbmatrix\endalign*
\]
- 对于不可逆的\((X^TX)\), \((X^TX + \lambda.L)\) 会可逆
Regularized Logistic Regression
- Cost Function
\[
J(\theta) = -\frac1m \sum_i=1^m[y^(i)log(h_\theta(x^(i))) + (1 - y^(i))log(1 - h_\theta(x^(i)))] + \frac\lambda2m\sum_j=1^n\theta_j^2
\]
- Gradient descent
\[
\beginalign* & \textRepeat\ \lbrace \newline & \ \ \ \ \theta_0 := \theta_0 - \alpha\ \frac1m\ \sum_i=1^m (h_\theta(x^(i)) - y^(i))x_0^(i) \newline & \ \ \ \ \theta_j := \theta_j - \alpha\ \left[ \left( \frac1m\ \sum_i=1^m (h_\theta(x^(i)) - y^(i))x_j^(i) \right) + \frac\lambdam\theta_j \right] &\ \ \ \ \ \ \ \ \ \ j \in \lbrace 1,2...n \rbrace \newline & \rbrace \endalign*
\]
以上是关于04 Regularization的主要内容,如果未能解决你的问题,请参考以下文章
tensorflow:神经网络优化(ema,regularization)
Improving DNNs Hyperparameter tuning-Regularization and Optimization(week2)Regularization
正则化方法:L1和L2 regularization数据集扩增dropout
学习笔记 | NIPS 2021 regularization cocktail 调优的 MLPs 在表格数据上优于 GBDTs | Regularization is All Your Need