02 Multivariate Linear Regression
Posted qq-1615160629
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了02 Multivariate Linear Regression相关的知识,希望对你有一定的参考价值。
h(x)
\[
\beginalign*h_\theta(x) =\beginbmatrix\theta_0 \hspace2em \theta_1 \hspace2em ... \hspace2em \theta_n\endbmatrix\beginbmatrixx_0 \newline x_1 \newline \vdots \newline x_n\endbmatrix= \theta^T x\endalign*, x_0^(i) = 1
\]Gradient descent equation
\[
\beginalign*& \textrepeat until convergence: \; \lbrace \newline \; & \theta_j := \theta_j - \alpha \frac1m \sum\limits_i=1^m (h_\theta(x^(i)) - y^(i)) \cdot x_j^(i) \; & \textfor j := 0...n\newline \rbrace\endalign*
\]当不同特征的值差距过大\((>10^5)\)时,需要特征缩放(Feature Scaling)
\[
x_i := \fracx_i - \mu_is_i
\]
Where \(\mu_i\) is the average of all the values for feature(i) and \(s_i\) is the range of values(max - min), or \(s_i\) is the standard deviation.Learning Rate
In automatic convergence test, declare convergence if \(J(\theta)\) decreases by less than \(1-^-3\) in one iteration.Features and Polynomial Regression
可以将不同的特征值组合来更好的拟合数据,同时因为数据的组合,更加需要特征缩放来加快几何提高精度Normal Equation 正规方程 不需要特征缩放
\[
\theta = (X^TX)^-1X^Ty
\]Comparation
Gradient Descent Normal Equation need to choose \(\alpha\) No need to choose \(\alpha\) Needs many iterations Don’t need to iterate Works well even when n is large (\(>10^4\)) Need to compute \((X^TX)^-1\) \(O(kn^2)\) Slow if n is very large \(O(n^3)\) If \(X^TX\) is noninvertible, the common causes might be having :
- Redundant features, where two features are very closely related (i.e. they are linearly dependent)
- Too many features (e.g. m ≤ n). In this case, delete some features or use "regularization" (to be explained in a later lesson).
以上是关于02 Multivariate Linear Regression的主要内容,如果未能解决你的问题,请参考以下文章
Numpy之高斯分布 multivariate_normal
关于协方差最小化 scipy.stats.multivariate_normal.logpdf
调用 scipy.stats.multivariate_normal 后,pylab.plot“无法将浮点 NaN 转换为整数”