Celery 基本使用

Posted midworld

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Celery 基本使用相关的知识,希望对你有一定的参考价值。

1. 认识 Celery

Celery 是一个 基于 Python 开发的分布式异步消息任务队列,可以实现任务异步处理,制定定时任务等。

  • 异步消息队列:执行异步任务时,会返回一个任务 ID 给你,过一段时间后拿着任务 ID 去取执行结果
  • 定时任务:类似于 Windows / Linux 上的定时任务,到点执行任务

Celery 在执行任务时需要通过一个消息中间件来接收和发送任务消息,以及存储任务结果, 一般使用 rabbitMQRedis(默认采用 RabbitMQ)

优点:

  • 简单易用
  • 高可用:即使执行失败或执行过程发生中断,也会尝试再次执行
  • 快速:一个单进程的 Celery 每分钟可以执行上百万个任务
  • 拓展性强:Celery 的各个组件都可以拓展和自定制

Celery 构成

技术图片

Celery 主要模块:

  • 任务模块 Task:异步和定时任务
  • 消息中间件 Broker:即任务调度队列,接收生产者发来的任务,将任务存入队列。Celery 本身不提供队列服务,官方推荐 RabbitMQ 或 Redis 等
  • 任务执行单元 Worker:处理任务,实时监控消息队列,获取队列中调度的任务,并执行它。
  • 结果存储 Backend:存储任务执行结果,以便查询,与中间件一样,也可以使用 RabbitMQ、Redis 或 MongoDB 存储

2. 异步任务

实现异步任务步骤:

  • 创建一个 Celery 实例
  • 启动 Celery Worker
  • 应用程序调用异步任务

1、安装

pip3 install 'celery[redis]'
pip3 install celery

2、创建 Celery 实例

C1/tasks.py

# -*- coding: utf-8 -*-
 
import time
from celery import Celery
 
broker = 'redis://127.0.0.1:6379'       # 消息中间件
backend = 'redis://127.0.0.1:6379/0'    # backend ,存储结果
 
app = Celery('my_task', broker=broker, backend=backend)     # 创建实例
 
# 创建一个任务,5s 后执行
@app.task(name='tasks.add')
def add(x, y):
    time.sleep(5)   # 模拟耗时操作
    return x + y

3、启动 Celery Worker

打开 Ubuntu 终端,输入:celery worker -A C1.tasks --loglevel=info,看到如下图就表示启动成功了:

参数:

  • A:指定实例所在位置
  • --loglevel:指定日志级别,有:warning、debug、info、error、fatal ,默认 warning

技术图片

4、调用任务

另起一个终端,进入 Python 环境,执行任务:

# Celery 提供两种方法来调用任务,delay() 或 apply_async() 方法
python3
>>> from tasks import add
>>> add.delay(6, 8)     # 调用任务,并返回一个任务 ID
<AsyncResult: 194e99af-d0bd-481b-a500-433ec19117e4>

技术图片

判断任务是否完成:

>>> result = add.delay(6, 8)
>>> result.ready()          # True 表示已完成
True

获取任务结果:

>>> result.get()
14

踩坑:在调用任务时出现Received unregistered task of type ‘tasks.add‘.

  • 原因:Celery 没有找到读取到任务
  • 解决办法:在装饰器出加上 name=‘tasks.add‘

参考博客:Received unregistered task of type ‘XXX’ Celery报错

3. 项目中使用 celery

celery 还可以配置成一个应用,放置在项目中使用,其结构为:

技术图片

Tips:

  • 项目应该是个包文件
  • 必须命名为 celery.py,否则报错 AttributeError:module ‘proj‘ has no attribute ‘celery‘

1、proj/celery.py

from __future__ import absolute_import, unicode_literals        # 将相对路径转换为绝对路径
from celery import Celery
# 创建一个Celery的实例
app = Celery('tasks',
             # redis://:[email protected]:port/db_number  有密码认证的连接
             broker='redis://127.0.0.1:6379',
             # broker='redis://:密码@192.168.2.105:6379/0',
             backend='redis://127.0.0.1:6379/0',  # 用于Celery的返回结果的接收
             include=['proj.tasks']       # 用于声明Celery要执行的tasks任务的位置
             )
# 配置结果超时时间
app.conf.update(
    result_expires=3600,   # Celery结果存在中间件Redis的超时时间[仅针对当前的Celery的App]
)
if __name__ == '__main__':
    app.start()

2、proj/tasks.py

from __future__ import absolute_import, unicode_literals
from .celery import app  # 从我的Celery中导入App
import time

@app.task(name='tasks.add')     # 需要配置 name='tasks.add',否则报 Received unregistered task of type 'app.tasks.add'.
def add(x, y):
    time.sleep(10)
    return x + y


@app.task(name='tasks.mul')
def mul(x, y):
    time.sleep(10)
    return x * y

3、启动 worker,分为前台和后台启动(无需关心起行为):

# 前台
celery -A proj worker -l info

运行结果如下:

技术图片

4、调用任务:

# 在这里使用终端调用,也可以再项目中调用
>>> from proj.tasks import add, mul

>>> result1 = add.delay(5, 8)
>>> result2 = mul.delay(5, 8)
>>> result1.get()       # 取值
13
>>> result2.get()
40

worker 放在后台继续运行,我们可以继续做别的事情:

# w1:worker
celery multi start w1 -A proj -l info       # 启动 worker
celery multi restart w1 -A proj -l info     # 重启
celery multi stop w1 -A proj -l info        # 关闭
ps -ef | grep celery                        # 查看目前还有几个 worker 正在运行

技术图片


参考文章

4. 定时任务

celery 通过 celery beat 模块即可实现定时任务功能。

4.1 小试牛刀

1、新建一个 c1\\task1.py,编辑如下:

from celery import Celery
from celery.schedules import crontab
 
app = Celery()
 
@app.on_after_configure.connect
def setup_periodic_tasks(sender, **kwargs):
    # 每过 10 s,执行一次 hello
    sender.add_periodic_task(10.0, test.s('hello'), name='add every 10')
 
    # 每过 30 s,执行一次 world
    sender.add_periodic_task(30.0, test.s('world'), expires=10)
 
    # 每周一七点三十执行一次 Happy Mondays!
    sender.add_periodic_task(
        crontab(hour=7, minute=30, day_of_week=1),
        test.s('Happy Mondays!'),
    )
 
@app.task
def test(arg):
    print(arg)

也可以配置成下面这样,或许更好理解:

# 可以配置多个
app.conf.beat_schedule = 
    'add-every-30-seconds':            # 任务名字
        'task': 'tasks.add',            # 执行 tasks 中的 add 函数
        'schedule': 30.0,               # 时间,也可以用 timedelta(seconds=20),
        'args': (16, 16)                # 参数
    ,

app.conf.timezone = 'UTC'               # 时区

2、启动 beat 进程,监控是否有任务:

[email protected]:~/桌面/c1$ celery -A task1 beat

技术图片

3、启动 worker 执行任务:

[email protected]:~/桌面/c1$ celery -A task1 worker

技术图片

从上图中可以看到,每过 10s,就会输出一个 hello,每过 30s 输出一个 world,当然这只是几个比较简单的任务示例。

beat 需要将任务的最后运行时间存储在本地数据库文件中(默认名称为 celerybeat-schedule),因此需要访问当前目录中的写入,或者您可以为此文件指定自定义位置:

# beat 运行时,会产生几个文件
[email protected]:~/桌面/c1$ ls
celerybeat.pid  celerybeat-schedule  __pycache__  task1.py

# 指定文件位置
celery -A task1 beat -s /home/celery/var/run/celerybeat-schedule

4.2 使用 crontab 构建复杂定时任务

如果你只是想每过多少秒输出一个 hello 的话,那么上面的功能就能实现。但是若你想每周一的早上七点半定时发送一封邮件或提醒做什么事的话,那么就只能使用 crontab 才能实现(与 Linux 自带的 crontab功能是一样的)。

from celery.schedules import crontab
from datetime import timedelta


app.conf.beat_schedule = 
     # 任务一
    'sum-task':                # 任务名
        'task':'tasks.add',     # 执行 tasks.py 中的 add 函数
        'schedule':timedelta(seconds=20),       # 时间
        'args':(5, 6)           # 参数
    ,
    # 任务二
    'multi-task': 
        'task': 'tasks.multi',
        'schedule': crontab(hour=4, minute=30, day_of_week=1),
        'args': (3, 4)
    

更多关于 crontab

示例 说明
crontab() 每分钟执行一次
crontab(minute=0, hour=0) 每天午夜执行
crontab(minute=0, hour=‘*/3‘) 每三个小时执行一次
crontab(minute=0,``hour=‘0,3,6,9,12,15,18,21‘) 与上面相同
crontab(minute=‘*/15‘) 每 15min执行一次
crontab(day_of_week=‘sunday‘) 周日每分钟执行一次
crontab(minute=‘*‘,``hour=‘*‘,``day_of_week=‘sun‘) 与上面相同
crontab(minute=‘*/10‘,``hour=‘3,17,22‘,``day_of_week=‘thu,fri‘) 每周四或周五凌晨3-4点,下午5-6点和晚上10-11点
crontab(minute=0,hour=‘*/2,*/3‘) 每过一个小时执行一次, 以下时间除外: 1am, 5am, 7am, 11am, 1pm, 5pm, 7pm, 11pm
crontab(minute=0, hour=‘*/5‘) 执行小时可被5整除,比如下午三点(十五点)触发
crontab(minute=0, hour=‘*/3,8-17‘) 执行时间能被 2整除,在办公时间 8-17点,每小时执行一次
crontab(0, 0,day_of_month=‘2‘) 每个月第二天执行
crontab(0, 0,``day_of_month=‘2-30/3‘) 每个偶数日执行
crontab(0, 0,``day_of_month=‘1-7,15-21‘) 在本月的第一周和第三周执行
crontab(0, 0,day_of_month=‘11‘,``month_of_year=‘5‘) 每年5月11日执行
crontab(0, 0,``month_of_year=‘*/3‘) 每个季度第一个月执行

参考文章

5. Django 中使用 Celery

5.1 构建简单的异步任务

- project/          # 项目主目录
  - app/            # app
        - urls.py
        - views.py
        - tasks.py  # celery 任务,名字必须是 tasks.py
  - project/            # 项目文件
        - __init__.py
        - settings.py
        - urls.py
        - celery.py     # 创建 Celery 实例,加载 redis 配置文件
  - manage.py

在 Django 中使用 Celery ,依赖 django_celery_beat,因此先要安装它:

pip3 install django_celery_beat

并将其添加到 settings.py 中:

INSTALLED_APPS = [
    'django.contrib.admin',
    'django.contrib.auth',
    'django.contrib.contenttypes',
    'django.contrib.sessions',
    'django.contrib.messages',
    'django.contrib.staticfiles',
    'app',
    'django_celery_beat',
]

...
# redis  连接
CELERY_BROKER_URL = 'redis://127.0.0.1:6397'
CELERY_RESULT_BACKEND = 'redis://127.0.0.1:6397/0'

1、project/celery

from __future__ import absolute_import, unicode_literals
import os
from celery import Celery, platforms

# 使用 Django 环境
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'Project.settings')

app = Celery('celery_task')

app.config_from_object('django.conf:settings', namespace='CELERY')

# Load task modules from all registered Django app configs.
app.autodiscover_tasks()

# 运行 root 用户运行 celery
platforms.C_FORCE_ROOT = True

@app.task(bind=True)
def debug_task(self):
    print('Request: 0!r'.format(self.request))

2、project/__init__.py

from __future__ import absolute_import, unicode_literals

# 确保导入应用,Django 启动就能使用 app 

from .celery import app as celery_app

__all__ = ['celery_app']

3、创建任务 app/tasks.py

from __future__ import absolute_import, unicode_literals
from celery import shared_task
import time 

@shared_task
def add(x, y):
    time.sleep(10)
    return x + y

@shared_task
def multi(x, y):
    time.sleep(10)
    return x * y

tasks.py 必须在各个 app 根目录下,且只能叫 tasks.py

4、视图中调用任务 views.py

  • ready():判断任务是否执行完毕
  • get(timeout=1):获取结果
  • traceback():获取原始回溯信息
from django.shortcuts import render, HttpResponse
from celery.result import AsyncResult

def celery_test(request):
    # 调用任务
    task = add.delay(4,22)

    return HttpResponse(task.id)    # 获取任务 id

def celery_res(request):
    # 获取任务结果
    task_id = 'b3fbe0da-57bb-4055-aea2-160afd6ae801'
    res = AsyncResult(id=task_id)
    return HttpResponse(res.get())      # 获取结果

5、路由配置 app/urls.py

path('celery_test/', views.celery_test, name='celery_test'),
path('celery_result/', views.celery_result, name='celery_result'),

6、打开终端启动 worker

celery -A project worker -l info

技术图片

访问 127.0.0.1:8000/app/celery_test 调用执行任务:

技术图片

访问 127.0.0.1:8000/app/celery_result 查看任务结果:

技术图片

因为这是异步处理的,所有再执行任务时,其他代码照样执行。

5.2 在 Django 中使用定时任务

在 Django 也能设置定时任务,依赖于 django_celery_beatcrontab

1、在 project/celery.py 添加定时任务:

from celery.schedules import crontab
from datetime import timedelta


app.conf.update(
        CELERYBEAT_SCHEDULE = 
            # 任务一
            'sum-task':
                'task':'app.tasks.add',
                'schedule':timedelta(seconds=20),
                'args':(5, 6)
                ,
            # 任务二
            'multi-task': 
                'task': 'app.tasks.multi',
                'schedule': crontab(hour=4, minute=30, day_of_week=1),
                'args': (3, 4)
                
            
        )

在上面添加了两个定时任务 sum-taskmulti-task

  • sum-task :每过 20 s执行一次 add() 函数
  • multi-task:每周一的早上四点三十分执行一次 multi() 函数

启动 celery beat ,celery 启动一个 beat 进程不断检查是否有任务要执行:

celery -A project beat -l info

timedelta

timedelta 是datetime 的一个对象,需要引入 from datatime import timedelta,参数如下:

  • days:天
  • seconds:秒
  • microseconds:微秒
  • milliseconds:毫秒
  • minutes:分钟
  • hours:小时

crontab

  • month_of_year:月份
  • day_of_month:日期
  • day_of_week:周
  • hour:小时
  • minute:分钟

总结

  • 同时启动异步任务和定时任务:celery -A project worker -b -l info
  • 使用 RabbitMQ,配置:broker=‘amqp://admin:[email protected]
  • Celery 长时间运行避免内存泄露,添加配置:CELERY_MAX_TASKS_PER_CHILD = 10

以上是关于Celery 基本使用的主要内容,如果未能解决你的问题,请参考以下文章

Celery基本使用

Celery的基本使用

Celery框架的基本使用方法

Celery介绍和基本使用

python 关于celery的异步任务队列的基本使用(celery+redis)采用配置文件设置

python celery介绍和基本使用