[LeetCode] 77. 组合
Posted powercai
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[LeetCode] 77. 组合相关的知识,希望对你有一定的参考价值。
题目链接 : https://leetcode-cn.com/problems/combinations/
题目描述:
给定两个整数 n 和 k,返回 1 ... n 中所有可能的 k 个数的组合。
示例:
输入: n = 4, k = 2
输出:
[
[2,4],
[3,4],
[2,3],
[1,2],
[1,3],
[1,4],
]
思路:
思路一: 库函数
class Solution:
def combine(self, n: int, k: int) -> List[List[int]]:
return list(itertools.combinations(range(1, n+1), k))
思路二: 回溯算法
代码:
思路二
class Solution:
def combine(self, n: int, k: int) -> List[List[int]]:
res = []
def backtrack(i, k, tmp):
if k == 0:
res.append(tmp)
return
for j in range(i, n + 1):
backtrack(j+1, k-1, tmp + [j])
backtrack(1, k, [])
return res
java
class Solution
public List<List<Integer>> combine(int n, int k)
List<List<Integer>> res = new ArrayList<>();
backtrack(1, n, k, res, new ArrayList<Integer>());
return res;
public void backtrack(int i, int n, int k, List<List<Integer>> res, ArrayList<Integer> tmp)
if (k == 0)
res.add(new ArrayList<>(tmp));
return;
for (int j = i; j <= n; j++)
tmp.add(j);
backtrack(j + 1, n, k - 1, res, tmp);
tmp.remove(tmp.size() - 1);
类似题目还有:
这类题目都是同一类型的,用回溯算法!
其实回溯算法关键在于:不合适就退回上一步
然后通过约束条件, 减少时间复杂度.
大家可以从下面的解法找出一点感觉!
class Solution:
def subsets(self, nums):
if not nums:
return []
res = []
n = len(nums)
def helper(idx, temp_list):
res.append(temp_list)
for i in range(idx, n):
helper(i + 1, temp_list + [nums[i]])
helper(0, [])
return res
class Solution(object):
def subsetsWithDup(self, nums):
"""
:type nums: List[int]
:rtype: List[List[int]]
"""
if not nums:
return []
n = len(nums)
res = []
nums.sort()
# 思路1
def helper1(idx, n, temp_list):
if temp_list not in res:
res.append(temp_list)
for i in range(idx, n):
helper1(i + 1, n, temp_list + [nums[i]])
# 思路2
def helper2(idx, n, temp_list):
res.append(temp_list)
for i in range(idx, n):
if i > idx and nums[i] == nums[i - 1]:
continue
helper2(i + 1, n, temp_list + [nums[i]])
helper2(0, n, [])
return res
class Solution(object):
def permute(self, nums):
"""
:type nums: List[int]
:rtype: List[List[int]]
"""
if not nums:
return
res = []
n = len(nums)
visited = [0] * n
def helper1(temp_list,length):
if length == n:
res.append(temp_list)
for i in range(n):
if visited[i] :
continue
visited[i] = 1
helper1(temp_list+[nums[i]],length+1)
visited[i] = 0
def helper2(nums,temp_list,length):
if length == n:
res.append(temp_list)
for i in range(len(nums)):
helper2(nums[:i]+nums[i+1:],temp_list+[nums[i]],length+1)
helper1([],0)
return res
class Solution(object):
def permuteUnique(self, nums):
"""
:type nums: List[int]
:rtype: List[List[int]]
"""
if not nums:
return []
nums.sort()
n = len(nums)
visited = [0] * n
res = []
def helper1(temp_list, length):
# if length == n and temp_list not in res:
# res.append(temp_list)
if length == n:
res.append(temp_list)
for i in range(n):
if visited[i] or (i > 0 and nums[i] == nums[i - 1] and not visited[i - 1]):
continue
visited[i] = 1
helper1(temp_list + [nums[i]], length + 1)
visited[i] = 0
def helper2(nums, temp_list, length):
if length == n and temp_list not in res:
res.append(temp_list)
for i in range(len(nums)):
helper2(nums[:i] + nums[i + 1:], temp_list + [nums[i]], length + 1)
helper1([],0)
# helper2(nums, [], 0)
return res
class Solution(object):
def combinationSum(self, candidates, target):
"""
:type candidates: List[int]
:type target: int
:rtype: List[List[int]]
"""
if not candidates:
return []
if min(candidates) > target:
return []
candidates.sort()
res = []
def helper(candidates, target, temp_list):
if target == 0:
res.append(temp_list)
if target < 0:
return
for i in range(len(candidates)):
if candidates[i] > target:
break
helper(candidates[i:], target - candidates[i], temp_list + [candidates[i]])
helper(candidates,target,[])
return res
class Solution:
def combinationSum2(self, candidates: List[int], target: int) -> List[List[int]]:
if not candidates:
return []
candidates.sort()
n = len(candidates)
res = []
def backtrack(i, tmp_sum, tmp_list):
if tmp_sum == target:
res.append(tmp_list)
return
for j in range(i, n):
if tmp_sum + candidates[j] > target : break
if j > i and candidates[j] == candidates[j-1]:continue
backtrack(j + 1, tmp_sum + candidates[j], tmp_list + [candidates[j]])
backtrack(0, 0, [])
return res
以上是关于[LeetCode] 77. 组合的主要内容,如果未能解决你的问题,请参考以下文章