关于hive on spark会话的共享状态

Posted 寒江孤影,江湖过客,相逢何必曾相识

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了关于hive on spark会话的共享状态相关的知识,希望对你有一定的参考价值。

spark sql中有一个类:

org.apache.spark.sql.internal.SharedState

它是用来做:

1、元数据地址管理(warehousePath)
2、查询结果缓存管理(cacheManager)
3、程序中的执行状态和metrics的监控(statusStore)
4、默认元数据库的目录管理(externalCatalog)
5、全局视图管理(主要是防止元数据库中存在重复)(globalTempViewManager)

1:首先介绍元数据地址管理(warehousePath)

这块儿主要是获取spark sql元数据库的路径地址,那么一般情况,我们都是默认把hive默认作为spark sql的元数据库,因为

它首先去加载hive的配置文件"hive-site.xml" , 然后根据hive-site.xml中获取的信息来获取到hive元数据库的路径:

hive.metastore.warehouse.dir

那么有时候,我们不使用hive作为spark sql的元数据库,那么这个时候我们加载的hive元数据路径应该是null

val hiveWarehouseDir = sparkContext.hadoopConfiguration.get("hive.metastore.warehouse.dir")

如果hiveWarehouseDir是null,那么就去加载spark sql的自带的元数据管理地址(spark.sql.warehouse.dir),然后把这个地址的值赋予给hive.metastore.warehouse.dir

因此大概流程就是获取hiveWarehouseDir:

具体代码:

val warehousePath: String = {
    val configFile = Utils.getContextOrSparkClassLoader.getResource("hive-site.xml")
    if (configFile != null) {
      logInfo(s"loading hive config file: $configFile")
      sparkContext.hadoopConfiguration.addResource(configFile)
    }

    // hive.metastore.warehouse.dir only stay in hadoopConf
    sparkContext.conf.remove("hive.metastore.warehouse.dir")
    // Set the Hive metastore warehouse path to the one we use
    val hiveWarehouseDir = sparkContext.hadoopConfiguration.get("hive.metastore.warehouse.dir")
    if (hiveWarehouseDir != null && !sparkContext.conf.contains(WAREHOUSE_PATH.key)) {
      // If hive.metastore.warehouse.dir is set and spark.sql.warehouse.dir is not set,
      // we will respect the value of hive.metastore.warehouse.dir.
      sparkContext.conf.set(WAREHOUSE_PATH.key, hiveWarehouseDir)
      logInfo(s"${WAREHOUSE_PATH.key} is not set, but hive.metastore.warehouse.dir " +
        s"is set. Setting ${WAREHOUSE_PATH.key} to the value of " +
        s"hive.metastore.warehouse.dir (\'$hiveWarehouseDir\').")
      hiveWarehouseDir
    } else {
      // If spark.sql.warehouse.dir is set, we will override hive.metastore.warehouse.dir using
      // the value of spark.sql.warehouse.dir.
      // When neither spark.sql.warehouse.dir nor hive.metastore.warehouse.dir is set,
      // we will set hive.metastore.warehouse.dir to the default value of spark.sql.warehouse.dir.
      val sparkWarehouseDir = sparkContext.conf.get(WAREHOUSE_PATH)
      logInfo(s"Setting hive.metastore.warehouse.dir (\'$hiveWarehouseDir\') to the value of " +
        s"${WAREHOUSE_PATH.key} (\'$sparkWarehouseDir\').")
      sparkContext.hadoopConfiguration.set("hive.metastore.warehouse.dir", sparkWarehouseDir)
      sparkWarehouseDir
    }
  }
  logInfo(s"Warehouse path is \'$warehousePath\'.")
warehousePath

 

2:CacheManager

将查询结果缓存起来 ; 这样的好处就是,如果后面还需要本次查询出来的内容,就不需要在查询一遍数据源了(这块儿有时间单独写篇文章记录)

具体代码:

  /**
   * Class for caching query results reused in future executions.
   */
  val cacheManager: CacheManager = new CacheManager
cacheManager

3:statusStore

代码:

  /**
   * A status store to query SQL status/metrics of this Spark application, based on SQL-specific
   * [[org.apache.spark.scheduler.SparkListenerEvent]]s.
   */
  val statusStore: SQLAppStatusStore = {
    val kvStore = sparkContext.statusStore.store.asInstanceOf[ElementTrackingStore]
    val listener = new SQLAppStatusListener(sparkContext.conf, kvStore, live = true)
    sparkContext.listenerBus.addToStatusQueue(listener)
    val statusStore = new SQLAppStatusStore(kvStore, Some(listener))
    sparkContext.ui.foreach(new SQLTab(statusStore, _))
    statusStore
  }
statusStore

这段代码其实说白了就是将sql的状态和一些metrics指标写入到监听器中。

那么问题来了,监听器一定是实时的去监听的(读取的),然后spark sql还要不断的往监听器中写入,那么按照传统的list,map这种结构,在读取数据的时候还要在修改结构,会出现错误的;

因此spark sql采用了写时复制容器:

private[this] val listenersPlusTimers = new CopyOnWriteArrayList[(L, Option[Timer])]

将信息不断的写入同时,还不影响读取;

4、externalCatalog

获取spark 会话的内部目录(就是hiveWarehouseDir),如果不存在的话,就按照hiveWarehouseDir创建一个 , 当然,spark会通过回调函数的方式去监控当前目录中的事件:

externalCatalog.addListener(new ExternalCatalogEventListener {
      override def onEvent(event: ExternalCatalogEvent): Unit = {
        sparkContext.listenerBus.post(event)
      }
    })

此处代码:

/**
   * A catalog that interacts with external systems.
   */
  lazy val externalCatalog: ExternalCatalog = {
    val externalCatalog = SharedState.reflect[ExternalCatalog, SparkConf, Configuration](
      SharedState.externalCatalogClassName(sparkContext.conf),
      sparkContext.conf,
      sparkContext.hadoopConfiguration)

    val defaultDbDefinition = CatalogDatabase(
      SessionCatalog.DEFAULT_DATABASE,
      "default database",
      CatalogUtils.stringToURI(warehousePath),
      Map())
    // Create default database if it doesn\'t exist
    if (!externalCatalog.databaseExists(SessionCatalog.DEFAULT_DATABASE)) {
      // There may be another Spark application creating default database at the same time, here we
      // set `ignoreIfExists = true` to avoid `DatabaseAlreadyExists` exception.
      externalCatalog.createDatabase(defaultDbDefinition, ignoreIfExists = true)
    }

    // Make sure we propagate external catalog events to the spark listener bus
    externalCatalog.addListener(new ExternalCatalogEventListener {
      override def onEvent(event: ExternalCatalogEvent): Unit = {
        sparkContext.listenerBus.post(event)
      }
    })

    externalCatalog
  }
externalCatalog

5、

此处就是防止spark执行过程中的临时数据库出现在externalCatalog中,因为如果spark的GLOBAL_TEMP_DATABASE出现在externalCatalog中的话。那么随着程序的执行,下一个线程想要获取元数据库地址的时候,就没法在里面创建hiveWarehouseDir。因此,如果在externalCatalog中存在GLOBAL_TEMP_DATABASE,那么就抛异常

  /**
   * A manager for global temporary views.
   */
  lazy val globalTempViewManager: GlobalTempViewManager = {
    // System preserved database should not exists in metastore. However it\'s hard to guarantee it
    // for every session, because case-sensitivity differs. Here we always lowercase it to make our
    // life easier.
    val globalTempDB = sparkContext.conf.get(GLOBAL_TEMP_DATABASE).toLowerCase(Locale.ROOT)
    if (externalCatalog.databaseExists(globalTempDB)) {
      throw new SparkException(
        s"$globalTempDB is a system preserved database, please rename your existing database " +
          "to resolve the name conflict, or set a different value for " +
          s"${GLOBAL_TEMP_DATABASE.key}, and launch your Spark application again.")
    }
    new GlobalTempViewManager(globalTempDB)
  }
globalTempViewManager

 

以上是关于关于hive on spark会话的共享状态的主要内容,如果未能解决你的问题,请参考以下文章

Hive On Spark

SparkSQL与Hive on Spark的比较

SparkSQL与Hive on Spark的区别与联系

黑猴子的家:Spark on hive 与 hive on spark 的区别

mac spark和hive整合(spark on hive)

SparkSQL & Spark on Hive & Hive on Spark