C# USB视频人脸检测
Posted zzz-
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了C# USB视频人脸检测相关的知识,希望对你有一定的参考价值。
此程序基于 虹软人脸识别进行的开发
SDK下载地址:https://ai.arcsoft.com.cn/ucenter/user/reg?utm_source=csdn1&utm_medium=referral
**前提条件**
从虹软官网下载获取ArcFace引擎应用开发包,及其对应的激活码(App_id, SDK_key)
将获取到的开发包导入到您的应用中
App_id与SDK_key是在初始化的时候需要使用
**基本类型**
所有基本类型在平台库中有定义。 定义规则是在ANSIC 中的基本类型
前加上字母“M”同时将类型的第一个字母改成大写。例如“long” 被定义成“MLong
**”数据结构与枚举**
AFR_FSDK_FACEINPUT
描述: 脸部信息
定义
typedef struct{ MRECT rcFace; AFR_FSDK_OrientCode lOrient; } AFR_FSDK_FACEINPUT, *LPAFR_FSDK_FACEINPUT;
成员描述
rcFace脸部矩形框信息
lOrient脸部旋转角度
AFR_FSDK_FACEMODEL
描述: 脸部特征信息
定义 typedef struct{ MByte *pbFeature; MInt32 lFeatureSize; } AFR_FSDK_FACEMODEL, *LPAFR_FSDK_FACEMODEL;
成员描述
pbFeature提取到的脸部特征
lFeatureSize特征信息长度
AFR_FSDK_VERSION
描述: 引擎版本信息
定义 typedef struct{ MInt32 lCodebase; MInt32 lMajor; MInt32 lMinor; MInt32 lBuild; MInt32 lFeatureLevel; MPChar Version; MPChar BuildDate; MPChar CopyRight; } AFR_FSDK_VERSION, *LPAFR_FSDK_VERSION;
成员描述 lCodebase代码库版本号 lMajor主版本号 lMinor次版本号 lBuild编译版本号,递增 lFeatureLevel特征库版本号 Version字符串形式的版本号 BuildDate编译时间 CopyRight版权 ``` 枚举 AFR_FSDK_ORIENTCODE 描述: 基于逆时针的脸部方向枚举值
定义
};
成员描述 AFR_FSDK_FOC_00 度 AFR_FSDK_FOC_9090度 AFR_FSDK_FOC_270270度 AFR_FSDK_FOC_180180度 AFR_FSDK_FOC_3030度 AFR_FSDK_FOC_6060度 AFR_FSDK_FOC_120120度 AFR_FSDK_FOC_150150度 AFR_FSDK_FOC_210210度 AFR_FSDK_FOC_240240度 AFR_FSDK_FOC_300300度 AFR_FSDK_FOC_330330度
`
支持的颜色格式
描述: 颜色格式及其对齐规则
定义
ASVL_PAF_I420 8-bit Y层,之后是8-bit的2x2 采样的U层和V层
ASVL_PAF_YUYV Y0, U0, Y1, V0
ASVL_PAF_RGB24_B8G8R8 BGR24, B8G8R8
API ReferenceAFR_FSDK_InitialEngine
描述: 初始化引擎参数
原型 MRESULT AFR_FSDK_InitialEngine( MPChar AppId, MPChar SDKKey, Mbyte *pMem, MInt32 lMemSize, MHandle *phEngine );
参数
AppId[in] 用户申请SDK时获取的App Id SDKKey[in] 用户申请SDK时获取的SDK Key pMem[in] 分配给引擎使用的内存地址 lMemSize[in] 分配给引擎使用的内存大小 phEngine[out] 引擎handle
返回值: 成功返回MOK,否则返回失败code。失败codes如下所列:
MERR_INVALID_PARAM 参数输入非法
MERR_NO_MEMORY 内存不足
AFR_FSDK_ExtractFRFeature
描述: 获取脸部特征参数
原型 MRESULT AFR_FSDK_ExtractFRFeature ( MHandle hEngine, LPASVLOFFSCREEN pInputImage, LPAFR_FSDK_FACEINPUT pFaceRes, LPAFR_FSDK_FACEMODEL pFaceModels );
参数
hEngine[in] 引擎handle pInputImage[in] 输入的图像数据 pFaceRes[in] 已检测到的脸部信息 pFaceModels[out] 提取的脸部特征信息
返回值: 成功返回MOK,否则返回失败code。失败codes如下所列:
MERR_INVALID_PARAM 参数输入非法
MERR_NO_MEMORY 内存不足
AFR_FSDK_FacePairMatching
描述: 脸部特征比较
原型
MRESULT AFR_FSDK_FacePairMatching( MHandle hEngine, AFR_FSDK_FACEMODEL *reffeature, AFR_FSDK_FACEMODEL *probefeature, MFloat *pfSimilScore );
参数
hEngine[in] 引擎handle reffeature[in] 已有脸部特征信息 probefeature[in] 被比较的脸部特征信息 pfSimilScore[out] 脸部特征相似程度数值
返回值: 成功返回MOK,否则返回失败code。失败codes如下所列:
MERR_INVALID_PARAM 参数输入非法
MERR_NO_MEMORY 内存不足
AFR_FSDK_UninitialEngine
描述: 销毁引擎,释放相应资源
原型 MRESULT AFR_FSDK_UninitialEngine( MHandle hEngine );
参数
hEngine[in] 引擎handle
返回值: 成功返回MOK,否则返回失败code。失败codes如下所列:
MERR_INVALID_PARAM 参数输入非法
AFR_FSDK_GetVersion
原型 const AFR_FSDK_VERSION * AFR_FSDK_GetVersion( MHandle hEngine );
相关事例代码
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; namespace ArcsoftFace { public struct AFD_FSDK_FACERES { public int nFace; // number of faces detected public IntPtr rcFace; // The bounding box of face public IntPtr lfaceOrient; // the angle of each face } } using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; namespace ArcsoftFace { public struct AFR_FSDK_FACEINPUT { public MRECT rcFace; // The bounding box of face public int lfaceOrient; // The orientation of face } } using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; namespace ArcsoftFace { public struct AFR_FSDK_FACEMODEL { public IntPtr pbFeature; // The extracted features public int lFeatureSize; // The size of pbFeature } } using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; namespace ArcsoftFace { public struct AFR_FSDK_Version { public int lCodebase; public int lMajor; public int lMinor; public int lBuild; public int lFeatureLevel; public IntPtr Version; public IntPtr BuildDate; public IntPtr CopyRight; } } using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Runtime.InteropServices; namespace ArcsoftFace { public class AmFaceVerify { /** * 初始化人脸检测引擎 * @return 初始化人脸检测引擎 */ [DllImport("libarcsoft_fsdk_face_detection.dll", CallingConvention = CallingConvention.Cdecl)] public static extern int AFD_FSDK_InitialFaceEngine(string appId, string sdkKey, IntPtr pMem, int lMemSize, ref IntPtr pEngine, int iOrientPriority, int nScale, int nMaxFaceNum); /** * 获取人脸检测 SDK 版本信息 * @return 获取人脸检测SDK 版本信息 */ [DllImport("libarcsoft_fsdk_face_detection.dll", CallingConvention = CallingConvention.Cdecl)] public static extern IntPtr AFD_FSDK_GetVersion(IntPtr pEngine); /** * 根据输入的图像检测出人脸位置,一般用于静态图像检测 * @return 人脸位置 */ [DllImport("libarcsoft_fsdk_face_detection.dll", CallingConvention = CallingConvention.Cdecl)] public static extern int AFD_FSDK_StillImageFaceDetection(IntPtr pEngine, IntPtr offline, ref IntPtr faceRes); /** * 初始化人脸识别引擎 * @return 初始化人脸识别引擎 */ [DllImport("libarcsoft_fsdk_face_recognition.dll", CallingConvention = CallingConvention.Cdecl)] public static extern int AFR_FSDK_InitialEngine(string appId, string sdkKey, IntPtr pMem, int lMemSize, ref IntPtr pEngine); /** * 获取人脸识别SDK 版本信息 * @return 获取人脸识别SDK 版本信息 */ [DllImport("libarcsoft_fsdk_face_recognition.dll", CallingConvention = CallingConvention.Cdecl)] public static extern IntPtr AFR_FSDK_GetVersion(IntPtr pEngine); /** * 提取人脸特征 * @return 提取人脸特征 */ [DllImport("libarcsoft_fsdk_face_recognition.dll", CallingConvention = CallingConvention.Cdecl)] public static extern int AFR_FSDK_ExtractFRFeature(IntPtr pEngine, IntPtr offline, IntPtr faceResult, IntPtr localFaceModels); /** * 获取相似度 * @return 获取相似度 */ [DllImport("libarcsoft_fsdk_face_recognition.dll", CallingConvention = CallingConvention.Cdecl)] public static extern int AFR_FSDK_FacePairMatching(IntPtr pEngine, IntPtr faceModels1, IntPtr faceModels2, ref float fSimilScore); #region delete ///** // * 创建人脸检测引擎 // * @param [in] model_path 模型文件夹路径 // * @param [out] engine 创建的人脸检测引擎 // * @return =0 表示成功,<0 表示错误码。 // */ //[DllImport("AmFaceDet.dll", CallingConvention = CallingConvention.Cdecl)] //public static extern int AmCreateFaceDetectEngine(string modelPath, ref IntPtr faceDetectEngine); ///** // * 创建人脸识别引擎 // * @param [in] model_path 模型文件夹路径 // * @param [out] engine 创建的人脸识别引擎 // * @return =0 表示成功,<0 表示错误码。 // */ //[DllImport("AmFaceRec.dll", CallingConvention = CallingConvention.Cdecl)] //public static extern int AmCreateFaceRecogniseEngine(string modelPath, ref IntPtr facRecogniseeEngine); ///** // * 创建人脸比对别引擎 // * @param [in] model_path 模型文件夹路径 // * @param [out] engine 创建的人脸比对引擎 // * @return =0 表示成功,<0 表示错误码。 // */ //[DllImport("AmFaceCompare.dll", CallingConvention = CallingConvention.Cdecl)] //public static extern int AmCreateFaceCompareEngine(ref IntPtr facCompareEngine); ///** // * 设置人脸引擎参数 // * @param [in] engine 人脸引擎 // * @param [in] param 人脸参数 // */ //[DllImport("AmFaceDet.dll", CallingConvention = CallingConvention.Cdecl)] //public static extern void AmSetParam(IntPtr faceDetectEngine, [MarshalAs(UnmanagedType.LPArray)] [In] TFaceParams[] setFaceParams); ///** // * 人脸检测 // * @param [in] engine 人脸引擎 // * @param [in] bgr 图像数据,BGR格式 // * @param [in] width 图像宽度 // * @param [in] height 图像高度 // * @param [in] pitch 图像数据行字节数 // * @param [in,out] faces 人脸结构体数组,元素个数应等于期望检测人脸个数 // * @param [in] face_count 期望检测人脸个数 // * @return >=0 表示实际检测到的人脸数量,<0 表示错误码。 // */ //[DllImport("AmFaceDet.dll", CallingConvention = CallingConvention.Cdecl)] //public static extern int AmDetectFaces(IntPtr faceDetectEngine, [MarshalAs(UnmanagedType.LPArray)] [In] byte[] image, int width, int height, int pitch, [MarshalAs(UnmanagedType.LPArray)] [In][Out] TAmFace[] faces, int face_count); ///** // * 抽取人脸特征 // * @param [in] engine 人脸引擎 // * @param [in] bgr 图像数据,BGR格式 // * @param [in] width 图像宽度 // * @param [in] height 图像高度 // * @param [in] pitch 图像数据行字节数 // * @param [in] face 人脸结构体 // * @param [out] feature 人脸特征 // * @return =0 表示成功,<0 表示错误码。 // */ //[DllImport("AmFaceRec.dll", CallingConvention = CallingConvention.Cdecl)] ////public static extern int AmExtractFeature(IntPtr faceEngine, [MarshalAs(UnmanagedType.LPArray)] [In] byte[] image, int width, int height, int pitch, [MarshalAs(UnmanagedType.LPArray)] [In] TAmFace[] faces, ref byte[] feature); //public static extern int AmExtractFeature(IntPtr facRecogniseeEngine, [MarshalAs(UnmanagedType.LPArray)] [In] byte[] image, int width, int height, int pitch, [MarshalAs(UnmanagedType.LPArray)] [In] TAmFace[] faces, [MarshalAs(UnmanagedType.LPArray)] [Out] byte[] feature); ///** // * 比对两个人脸特征相似度 // * @param [in] engine 人脸引擎 // * @param [in] feature1 人脸特征1 // * @param [in] feature2 人脸特征2 // * @return 人脸相似度 // */ //[DllImport("AmFaceCompare.dll", CallingConvention = CallingConvention.Cdecl)] //public static extern float AmCompare(IntPtr facCompareEngine, byte[] feature1, byte[] feature2); #endregion } } using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Runtime.InteropServices; namespace ArcsoftFace { public struct ASVLOFFSCREEN { public int u32PixelArrayFormat; public int i32Width; public int i32Height; [MarshalAs(UnmanagedType.ByValArray, SizeConst = 4)] public IntPtr[] ppu8Plane; [MarshalAs(UnmanagedType.ByValArray, SizeConst = 4)] public int[] pi32Pitch; } } using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; namespace ArcsoftFace { public struct MRECT { public int left; public int top; public int right; public int bottom; } } using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; using System.Drawing; using System.Text; using System.Windows.Forms; using Emgu.CV.CvEnum; using Emgu.CV;//PS:调用的Emgu dll using Emgu.CV.Structure; using Emgu.Util; using Emgu.CV.UI; using Emgu.CV.OCR; using System.Threading; using ArcsoftFace; using System.Timers; using Emgu.CV.Util; using System.Linq; using System.Runtime.InteropServices; using System.Drawing.Imaging; using System.Text; using System.Diagnostics; using System.Drawing.Drawing2D; namespace ArcsoftFace { public partial class Form2 : Form { private Capture capture = new Capture(0); private bool captureinprocess;//判断摄像头的状态 byte[] firstFeature; byte[] secondFeature; //人脸检测引擎 IntPtr detectEngine = IntPtr.Zero; //人脸识别引擎 IntPtr regcognizeEngine = IntPtr.Zero; //拖拽线程 private string haarXmlPath = "haarcascade_frontalface_alt_tree.xml"; double scale = 1.5; // web camera private System.Timers.Timer capture_tick; private bool capture_flag = true; Image<Gray, Byte> gray = null; Image<Bgr, Byte> smallframe = null; Mat frame = new Mat(); private int sb = 0; Rectangle f = new Rectangle(); public Form2() { InitializeComponent(); capture_tick = new System.Timers.Timer(); capture_tick.Interval = 50; capture_tick.Enabled = Enabled; capture_tick.Stop(); capture_tick.Elapsed += new ElapsedEventHandler(processfram); } private byte[] getBGR(Bitmap image, ref int width, ref int height, ref int pitch) { //Bitmap image = new Bitmap(imgPath); const PixelFormat PixelFormat = PixelFormat.Format24bppRgb; BitmapData data = image.LockBits(new Rectangle(0, 0, image.Width, image.Height), ImageLockMode.ReadOnly, PixelFormat); IntPtr ptr = data.Scan0; int ptr_len = data.Height * Math.Abs(data.Stride); byte[] ptr_bgr = new byte[ptr_len]; Marshal.Copy(ptr, ptr_bgr, 0, ptr_len); width = data.Width; height = data.Height; pitch = Math.Abs(data.Stride); int line = width * 3; int bgr_len = line * height; byte[] bgr = new byte[bgr_len]; for (int i = 0; i < height; ++i) { Array.Copy(ptr_bgr, i * pitch, bgr, i * line, line); } pitch = line; image.UnlockBits(data); return bgr; } private void button1_Click(object sender, EventArgs e) { if (capture != null)//摄像头不为空 { if (captureinprocess) { imageBox1.Enabled = false; // Application.Idle -= new EventHandler(processfram); capture_tick.Stop(); button1.Text = "Stop"; } else { // Application.Idle += new EventHandler(processfram); imageBox1.Enabled = true; capture_tick.Start(); button1.Text = "Start"; } captureinprocess = !captureinprocess; } else//摄像头为空则通过Capture()方法调用 { try { capture = new Capture(0); } catch (NullReferenceException excpt) { MessageBox.Show(excpt.Message); } } } private void processfram(object sender, EventArgs arg) { capture_tick.Enabled = false; try { if (frame != null) { frame = capture.QueryFrame(); Emgu.CV.Image<Bgr, Byte> image = frame.ToImage<Bgr, Byte>(); Image<Bgr, Byte> currentFrame = image; if (sb == 0) { sb += 1; MRECT rect = detectAndExtractFeature(image.ToBitmap(), 1); if (Math.Abs(rect.left - f.Left) > 30 || Math.Abs(rect.top - f.Top) > 30) { f = new Rectangle(rect.left, rect.top, rect.right - rect.left, rect.bottom - rect.top); } } else if (sb >= 4) { sb = 0; } else { sb += 1; } // currentFrame.Draw(rect, new Bgr(Color.Red)); // image.Draw(detectAndExtractFeature(image.ToBitmap(),1),new Bgr(Color.Red),3); currentFrame.Draw(f, new Bgr(Color.Red), 3); imageBox1.Image = currentFrame.ToBitmap(); PointF pf = new PointF(50, 50); using (Graphics g = imageBox1.CreateGraphics()) { Font font = new Font("Arial", 12); g.DrawString("left:" + f.Left + " top:" + f.Top, font, Brushes.Green, pf); } currentFrame.Dispose(); image.Dispose(); ; } capture_tick.Enabled = true; } catch (Exception e) { Console.WriteLine(e.Message); capture_tick.Enabled = true; } } public static void BoundingBox(Image<Gray, byte> src, Image<Bgr, byte> draw) { using (VectorOfVectorOfPoint contours = new VectorOfVectorOfPoint()) { CvInvoke.FindContours(src, contours, null, RetrType.External, ChainApproxMethod.ChainApproxSimple); int count = contours.Size; for (int i = 0; i < count; i++) { using (VectorOfPoint contour = contours[i]) { Rectangle BoundingBox = CvInvoke.BoundingRectangle(contour); CvInvoke.Rectangle(draw, BoundingBox, new MCvScalar(255, 0, 255, 255), 3); } } } } public void CaptureProcess(object sender, EventArgs arg) { Mat frame1 = new Mat(); frame1 = capture.QueryFrame(); if (frame1 != null) { //face detection //frame = frame.Flip(Emgu.CV.CvEnum.FLIP.HORIZONTAL); // smallframe = frame.Resize(1 / scale, Emgu.CV.CvEnum.INTER.CV_INTER_LINEAR);//缩放摄像头拍到的大尺寸照片 gray = smallframe.Convert<Gray, Byte>(); //Convert it to Grayscale gray._EqualizeHist();//均衡化 CascadeClassifier ccr = new CascadeClassifier(haarXmlPath); Rectangle[] rects = ccr.DetectMultiScale(gray, 1.3, 3, new Size(20, 20), Size.Empty); foreach (Rectangle r in rects) { //This will focus in on the face from the haar results its not perfect but it will remove a majoriy //of the background noise Rectangle facesDetected = r; facesDetected.X += (int)(facesDetected.Height * 0.6); facesDetected.Y += (int)(facesDetected.Width * 0.8); facesDetected.Height += (int)(facesDetected.Height * 0.1); facesDetected.Width += (int)(facesDetected.Width * 0.2); // frame.Draw(facesDetected, new Bgr(Color.Red), 3);//绘制检测框 } // imageBox_capture.Image = frame; } } private MRECT detectAndExtractFeature(Image imageParam, int firstSecondFlg) { byte[] feature = null; MRECT rect = new MRECT(); Bitmap bitmap = new Bitmap(imageParam); byte[] imageData = null; IntPtr imageDataPtr = IntPtr.Zero; ASVLOFFSCREEN offInput = new ASVLOFFSCREEN(); AFD_FSDK_FACERES faceRes = new AFD_FSDK_FACERES(); IntPtr faceResPtr = IntPtr.Zero; try { int width = 0; int height = 0; int pitch = 0; imageData = getBGR(bitmap, ref width, ref height, ref pitch); //GCHandle hObject = GCHandle.Alloc(imageData, GCHandleType.Pinned); //IntPtr imageDataPtr = hObject.AddrOfPinnedObject(); imageDataPtr = Marshal.AllocHGlobal(imageData.Length); Marshal.Copy(imageData, 0, imageDataPtr, imageData.Length); offInput.u32PixelArrayFormat = 513; offInput.ppu8Plane = new IntPtr[4]; offInput.ppu8Plane[0] = imageDataPtr; offInput.i32Width = width; offInput.i32Height = height; offInput.pi32Pitch = new int[4]; offInput.pi32Pitch[0] = pitch; IntPtr offInputPtr = Marshal.AllocHGlobal(Marshal.SizeOf(offInput)); Marshal.StructureToPtr(offInput, offInputPtr, false); faceResPtr = Marshal.AllocHGlobal(Marshal.SizeOf(faceRes)); //Marshal.StructureToPtr(faceRes, faceResPtr, false); //人脸检测 int detectResult = AmFaceVerify.AFD_FSDK_StillImageFaceDetection(detectEngine, offInputPtr, ref faceResPtr); object obj = Marshal.PtrToStructure(faceResPtr, typeof(AFD_FSDK_FACERES)); faceRes = (AFD_FSDK_FACERES)obj; for (int i = 0; i < faceRes.nFace; i++) { rect = (MRECT)Marshal.PtrToStructure(faceRes.rcFace + Marshal.SizeOf(typeof(MRECT)) * i, typeof(MRECT)); int orient = (int)Marshal.PtrToStructure(faceRes.lfaceOrient + Marshal.SizeOf(typeof(int)) * i, typeof(int)); if (i == 0) { Image image = CutFace(bitmap, rect.left, rect.top, rect.right - rect.left, rect.bottom - rect.top); if (firstSecondFlg == 1) { this.pictureBox3.Image = image; } else if (firstSecondFlg == 2) { this.pictureBox4.Image = image; } } } } catch (Exception e) { LogHelper.WriteErrorLog("detect", e.Message + "\n" + e.StackTrace); } finally { bitmap.Dispose(); imageData = null; Marshal.FreeHGlobal(imageDataPtr); offInput = new ASVLOFFSCREEN(); faceRes = new AFD_FSDK_FACERES(); } return rect; } private Image DrawRectangleInPicture(Image bmp, Point p0, Point p1, Color RectColor, int LineWidth, DashStyle ds) { if (bmp == null) return null; Graphics g = Graphics.FromImage(bmp); Brush brush = new SolidBrush(RectColor); Pen pen = new Pen(brush, LineWidth); pen.DashStyle = ds; g.DrawRectangle(pen, new Rectangle(p0.X, p0.Y, Math.Abs(p0.X - p1.X), Math.Abs(p0.Y - p1.Y))); g.Dispose(); return bmp; } public static Bitmap CutFace(Bitmap srcImage, int StartX, int StartY, int iWidth, int iHeight) { if (srcImage == null) { return null; } int w = srcImage.Width; int h = srcImage.Height; if (StartX >= w || StartY >= h) { return null; } if (StartX + iWidth > w) { iWidth = w - StartX; } if (StartY + iHeight > h) { iHeight = h - StartY; } try { Bitmap bmpOut = new Bitmap(iWidth, iHeight, PixelFormat.Format24bppRgb); Graphics g = Graphics.FromImage(bmpOut); g.DrawImage(srcImage, new Rectangle(0, 0, iWidth, iHeight), new Rectangle(StartX, StartY, iWidth, iHeight), GraphicsUnit.Pixel); g.Dispose(); return bmpOut; } catch { return null; } } private void Form2_Load(object sender, System.EventArgs e) { #region 初始化人脸检测引擎 int detectSize = 40 * 1024 * 1024; IntPtr pMem = Marshal.AllocHGlobal(detectSize); //1-1 //string appId = "4tnYSJ68e8wztSo4Cf7WvbyMZduHwpqtThAEM3obMWbE"; //1-1 //string sdkKey = "Cgbaq34izc8PA2Px26x8qqWTQn2P5vxijaWKdUrdCwYT"; //1-n string appId = "8b4R2gvcoFQXKbC4wGtnYcqsa9Bd3FLiN3VWDFtJqcnB"; //1-n string sdkKey = "A5Km3QjZKGuakWRmC2pSWTuNzbNbaSCnj5fFtjBBcdxm"; //人脸检测引擎初始化 // IntPtr aaa= AFD_FSDKLibrary.AFD_FSDK_InitialFaceEngine(appId, sdkKey, pMem, detectSize, ref detectEngine, 5, 50, 1); int retCode = AmFaceVerify.AFD_FSDK_InitialFaceEngine(appId, sdkKey, pMem, detectSize, ref detectEngine, 5, 50, 1); //获取人脸检测引擎版本 IntPtr versionPtr = AmFaceVerify.AFD_FSDK_GetVersion(detectEngine); AFR_FSDK_Version version = (AFR_FSDK_Version)Marshal.PtrToStructure(versionPtr, typeof(AFR_FSDK_Version)); Console.WriteLine("lCodebase:{0} lMajor:{1} lMinor:{2} lBuild:{3} Version:{4} BuildDate:{5} CopyRight:{6}", version.lCodebase, version.lMajor, version.lMinor, version.lBuild, Marshal.PtrToStringAnsi(version.Version), Marshal.PtrToStringAnsi(version.BuildDate), Marshal.PtrToStringAnsi(version.CopyRight)); //Marshal.FreeHGlobal(versionPtr); #endregion #region 初始化人脸识别引擎 int recognizeSize = 40 * 1024 * 1024; IntPtr pMemDetect = Marshal.AllocHGlobal(recognizeSize); //1-1 //string appIdDetect = "4tnYSJ68e8wztSo4Cf7WvbyMZduHwpqtThAEM3obMWbE"; //1-1 //string sdkKeyDetect = "Cgbaq34izc8PA2Px26x8qqWaaBHbPD7wWMcTU6xe8VRo"; //1-n string appIdDetect = "8b4R2gvcoFQXKbC4wGtnYcqsa9Bd3FLiN3VWDFtJqcnB"; //1-n string sdkKeyDetect = "A5Km3QjZKGuakWRmC2pSWTuW9zdndn5EkVDo4LceRxLU"; //人脸识别引擎初始化 retCode = AmFaceVerify.AFR_FSDK_InitialEngine(appIdDetect, sdkKeyDetect, pMemDetect, recognizeSize, ref regcognizeEngine); //获取人脸识别引擎版本 IntPtr versionPtrDetect = AmFaceVerify.AFR_FSDK_GetVersion(regcognizeEngine); AFR_FSDK_Version versionDetect = (AFR_FSDK_Version)Marshal.PtrToStructure(versionPtrDetect, typeof(AFR_FSDK_Version)); Console.WriteLine("lCodebase:{0} lMajor:{1} lMinor:{2} lBuild:{3} lFeatureLevel:{4} Version:{5} BuildDate:{6} CopyRight:{7}", versionDetect.lCodebase, versionDetect.lMajor, versionDetect.lMinor, versionDetect.lBuild, versionDetect.lFeatureLevel, Marshal.PtrToStringAnsi(versionDetect.Version), Marshal.PtrToStringAnsi(versionDetect.BuildDate), Marshal.PtrToStringAnsi(versionDetect.CopyRight)); #endregion } } }
USB视频 动态画框 源码下载地址
https://download.csdn.net/download/zhang1244/10368237
运行效果地址
https://download.csdn.net/download/zhang1244/10368222
普通人脸照片进行关键点提取以及相关对比相似度
https://download.csdn.net/download/zhang1244/10368197
运行效果地址
https://download.csdn.net/download/zhang1244/10368181
相关技术交流,后期可能开发相关与身份证照片进行实名制对比。请继续关注
```
以上是关于C# USB视频人脸检测的主要内容,如果未能解决你的问题,请参考以下文章
Python 用dlib来实现视频人脸检测 (很卡,我电脑带不动,卡死了。。)我的是轻薄本
使用 Qt Gui 执行慢速实时视频源的 Opencv 人脸检测
今天大佬教你用Python3-OpenCV实现实时摄像头人脸检测