验证码操作完整流程,可选其中一部分进行识别
Posted 542684416-qq
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了验证码操作完整流程,可选其中一部分进行识别相关的知识,希望对你有一定的参考价值。
from PIL import Image from pytesseract import * from fnmatch import fnmatch from queue import Queue import matplotlib.pyplot as plt import cv2 import time import os def clear_border(img, img_name): ‘‘‘去除边框 ‘‘‘ filename = ‘./out_img/‘ + img_name.split(‘.‘)[0] + ‘-clearBorder.jpg‘ h, w = img.shape[:2] for y in range(0, w): for x in range(0, h): # if y ==0 or y == w -1 or y == w - 2: if y < 4 or y > w - 4: img[x, y] = 255 # if x == 0 or x == h - 1 or x == h - 2: if x < 4 or x > h - 4: img[x, y] = 255 cv2.imwrite(filename, img) return img def interference_line(img, img_name): ‘‘‘ 干扰线降噪 ‘‘‘ filename = ‘./out_img/‘ + img_name.split(‘.‘)[0] + ‘-interferenceline.jpg‘ h, w = img.shape[:2] # !!!opencv矩阵点是反的 # img[1,2] 1:图片的高度,2:图片的宽度 for y in range(1, w - 1): for x in range(1, h - 1): count = 0 if img[x, y - 1] > 245: count = count + 1 if img[x, y + 1] > 245: count = count + 1 if img[x - 1, y] > 245: count = count + 1 if img[x + 1, y] > 245: count = count + 1 if count > 2: img[x, y] = 255 cv2.imwrite(filename, img) return img def interference_point(img, img_name, x=0, y=0): """点降噪 9邻域框,以当前点为中心的田字框,黑点个数 :param x: :param y: :return: """ filename = ‘./out_img/‘ + img_name.split(‘.‘)[0] + ‘-interferencePoint.jpg‘ # todo 判断图片的长宽度下限 cur_pixel = img[x, y] # 当前像素点的值 height, width = img.shape[:2] for y in range(0, width - 1): for x in range(0, height - 1): if y == 0: # 第一行 if x == 0: # 左上顶点,4邻域 # 中心点旁边3个点 sum = int(cur_pixel) + int(img[x, y + 1]) + int(img[x + 1, y]) + int(img[x + 1, y + 1]) if sum <= 2 * 245: img[x, y] = 0 elif x == height - 1: # 右上顶点 sum = int(cur_pixel) + int(img[x, y + 1]) + int(img[x - 1, y]) + int(img[x - 1, y + 1]) if sum <= 2 * 245: img[x, y] = 0 else: # 最上非顶点,6邻域 sum = int(img[x - 1, y]) + int(img[x - 1, y + 1]) + int(cur_pixel) + int(img[x, y + 1]) + int(img[x + 1, y]) + int(img[x + 1, y + 1]) if sum <= 3 * 245: img[x, y] = 0 elif y == width - 1: # 最下面一行 if x == 0: # 左下顶点 # 中心点旁边3个点 sum = int(cur_pixel) + int(img[x + 1, y]) + int(img[x + 1, y - 1]) + int(img[x, y - 1]) if sum <= 2 * 245: img[x, y] = 0 elif x == height - 1: # 右下顶点 sum = int(cur_pixel) + int(img[x, y - 1]) + int(img[x - 1, y]) + int(img[x - 1, y - 1]) if sum <= 2 * 245: img[x, y] = 0 else: # 最下非顶点,6邻域 sum = int(cur_pixel) + int(img[x - 1, y]) + int(img[x + 1, y]) + int(img[x, y - 1]) + int(img[x - 1, y - 1]) + int(img[x + 1, y - 1]) if sum <= 3 * 245: img[x, y] = 0 else: # y不在边界 if x == 0: # 左边非顶点 sum = int(img[x, y - 1]) + int(cur_pixel) + int(img[x, y + 1]) + int(img[x + 1, y - 1]) + int(img[x + 1, y]) + int(img[x + 1, y + 1]) if sum <= 3 * 245: img[x, y] = 0 elif x == height - 1: # 右边非顶点 sum = int(img[x, y - 1]) + int(cur_pixel) + int(img[x, y + 1]) + int(img[x - 1, y - 1]) + int(img[x - 1, y]) + int(img[x - 1, y + 1]) if sum <= 3 * 245: img[x, y] = 0 else: # 具备9领域条件的 sum = int(img[x - 1, y - 1]) + int(img[x - 1, y]) + int(img[x - 1, y + 1]) + int(img[x, y - 1]) + int(cur_pixel) + int(img[x, y + 1]) + int(img[x + 1, y - 1]) + int(img[x + 1, y]) + int(img[x + 1, y + 1]) if sum <= 4 * 245: img[x, y] = 0 cv2.imwrite(filename, img) return img def _get_dynamic_binary_image(filedir, img_name): ‘‘‘ 自适应阀值二值化 ‘‘‘ filename = ‘./out_img/‘ + img_name.split(‘.‘)[0] + ‘-binary.jpg‘ img_name = filedir + ‘/‘ + img_name print(‘.....‘ + img_name) im = cv2.imread(img_name) im = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY) th1 = cv2.adaptiveThreshold(im, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 21, 1) cv2.imwrite(filename, th1) return th1 def _get_static_binary_image(img, threshold=140): ‘‘‘ 手动二值化 ‘‘‘ img = Image.open(img) img = img.convert(‘L‘) pixdata = img.load() w, h = img.size for y in range(h): for x in range(w): if pixdata[x, y] < threshold: pixdata[x, y] = 0 else: pixdata[x, y] = 255 return img def cfs(im, x_fd, y_fd): ‘‘‘用队列和集合记录遍历过的像素坐标代替单纯递归以解决cfs访问过深问题 ‘‘‘ # print(‘**********‘) xaxis = [] yaxis = [] visited = set() q = Queue() q.put((x_fd, y_fd)) visited.add((x_fd, y_fd)) offsets = [(1, 0), (0, 1), (-1, 0), (0, -1)] # 四邻域 while not q.empty(): x, y = q.get() for xoffset, yoffset in offsets: x_neighbor, y_neighbor = x + xoffset, y + yoffset if (x_neighbor, y_neighbor) in (visited): continue # 已经访问过了 visited.add((x_neighbor, y_neighbor)) try: if im[x_neighbor, y_neighbor] == 0: xaxis.append(x_neighbor) yaxis.append(y_neighbor) q.put((x_neighbor, y_neighbor)) except IndexError: pass # print(xaxis) if (len(xaxis) == 0 | len(yaxis) == 0): xmax = x_fd + 1 xmin = x_fd ymax = y_fd + 1 ymin = y_fd else: xmax = max(xaxis) xmin = min(xaxis) ymax = max(yaxis) ymin = min(yaxis) # ymin,ymax=sort(yaxis) return ymax, ymin, xmax, xmin def detectFgPix(im, xmax): ‘‘‘搜索区块起点 ‘‘‘ h, w = im.shape[:2] for y_fd in range(xmax + 1, w): for x_fd in range(h): if im[x_fd, y_fd] == 0: return x_fd, y_fd def CFS(im): ‘‘‘切割字符位置 ‘‘‘ zoneL = [] # 各区块长度L列表 zoneWB = [] # 各区块的X轴[起始,终点]列表 zoneHB = [] # 各区块的Y轴[起始,终点]列表 xmax = 0 # 上一区块结束黑点横坐标,这里是初始化 for i in range(10): try: x_fd, y_fd = detectFgPix(im, xmax) # print(y_fd,x_fd) xmax, xmin, ymax, ymin = cfs(im, x_fd, y_fd) L = xmax - xmin H = ymax - ymin zoneL.append(L) zoneWB.append([xmin, xmax]) zoneHB.append([ymin, ymax]) except TypeError: return zoneL, zoneWB, zoneHB return zoneL, zoneWB, zoneHB def cutting_img(im, im_position, img, xoffset=1, yoffset=1): filename = ‘./out_img/‘ + img.split(‘.‘)[0] # 识别出的字符个数 im_number = len(im_position[1]) # 切割字符 for i in range(im_number): im_start_X = im_position[1][i][0] - xoffset im_end_X = im_position[1][i][1] + xoffset im_start_Y = im_position[2][i][0] - yoffset im_end_Y = im_position[2][i][1] + yoffset cropped = im[im_start_Y:im_end_Y, im_start_X:im_end_X] cv2.imwrite(filename + ‘-cutting-‘ + str(i) + ‘.jpg‘, cropped) def main(): filedir = ‘./img‘ for file in os.listdir(filedir): if fnmatch(file, ‘*.jpg‘): img_name = file # 自适应阈值二值化 im = _get_dynamic_binary_image(filedir, img_name) # 去除边框 im = clear_border(im, img_name) 对图片进行干扰线降噪 im = interference_line(im, img_name) 对图片进行点降噪 im = interference_point(im, img_name) 切割的位置 im_position = CFS(im) maxL = max(im_position[0]) minL = min(im_position[0]) # 如果有粘连字符,如果一个字符的长度过长就认为是粘连字符,并从中间进行切割 if (maxL > minL + minL * 0.7): maxL_index = im_position[0].index(maxL) minL_index = im_position[0].index(minL) # 设置字符的宽度 im_position[0][maxL_index] = maxL // 2 im_position[0].insert(maxL_index + 1, maxL // 2) # 设置字符X轴[起始,终点]位置 im_position[1][maxL_index][1] = im_position[1][maxL_index][0] + maxL // 2 im_position[1].insert(maxL_index + 1, [im_position[1][maxL_index][1] + 1, im_position[1][maxL_index][1] + 1 + maxL // 2]) # 设置字符的Y轴[起始,终点]位置 im_position[2].insert(maxL_index + 1, im_position[2][maxL_index]) # 切割字符,要想切得好就得配置参数,通常 1 or 2 就可以 cutting_img(im, im_position, img_name, 1, 1) # 识别验证码 cutting_img_num = 0 for file in os.listdir(‘./out_img‘): str_img = ‘‘ if fnmatch(file, ‘%s-cutting-*.jpg‘ % img_name.split(‘.‘)[0]): cutting_img_num += 1 for i in range(cutting_img_num): try: file = ‘./out_img/%s-cutting-%s.jpg‘ % (img_name.split(‘.‘)[0], i) # 识别验证码 str_img = str_img + image_to_string(Image.open(file), lang=‘eng‘, config=‘-psm 10‘) # 单个字符是10,一行文本是7 except Exception as err: pass print(‘识别为:%s‘ % str_img) if __name__ == ‘__main__‘: main()
1.同级目录创建img文件夹;
2.同级目录创建out_img文件夹;
3.图片选取一张保存到img文件夹中;
以上是关于验证码操作完整流程,可选其中一部分进行识别的主要内容,如果未能解决你的问题,请参考以下文章