Hive实践(hive0.12)
Posted ldxsuanfa
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Hive实践(hive0.12)相关的知识,希望对你有一定的参考价值。
版本号:cdh5.0.0+hadoop2.3.0+hive0.12
一、原始数据:
1. 本地数据
[[email protected] data]# ll
total 12936
-rw-r--r--. 1 root root 13245467 May 1 17:08 hbase-data.csv
[[email protected] data]# head -n 3 hbase-data.csv
1,1.52101,13.64,4.49,1.1,71.78,0.06,8.75,0,0,1
2,1.51761,13.89,3.6,1.36,72.73,0.48,7.83,0,0,1
3,1.51618,13.53,3.55,1.54,72.99,0.39,7.78,0,0,1
2. hdfs数据:
[[email protected] data]# hadoop fs -ls /input
Found 1 items
-rwxrwxrwx 1 hdfs supergroup 13245467 2014-05-01 17:09 /input/hbase-data.csv
[[email protected] data]# hadoop fs -cat /input/* | head -n 3
1,1.52101,13.64,4.49,1.1,71.78,0.06,8.75,0,0,1
2,1.51761,13.89,3.6,1.36,72.73,0.48,7.83,0,0,1
3,1.51618,13.53,3.55,1.54,72.99,0.39,7.78,0,0,1
二、创建hive表:
1.hive外部表:
[[email protected] hive]# cat employees_ext.sql
create external table if not exists employees_ext(
id int,
x1 float,
x2 float,
x3 float,
x4 float,
x5 float,
x6 float,
x7 float,
x8 float,
x9 float,
y int)
row format delimited fields terminated by ‘,‘
location ‘/input/‘
创建表,client执行 :hive -f employees_ext.sql
2. hive表
[[email protected] hive]# cat employees.sql
create table employees(
id int,
x1 float,
x2 float,
x3 float,
x4 float,
x5 float,
x6 float,
x7 float,
x8 float,
x9 float
)
partitioned by (y int);
创建表,client执行:hive -f employees.sql
3. hive表(orc方式存储)
[[email protected] hive]# cat employees_orc.sql
create table employees_orc(
id int,
x1 float,
x2 float,
x3 float,
x4 float,
x5 float,
x6 float,
x7 float,
x8 float,
x9 float
)
partitioned by (y int)
row format serde "org.apache.hadoop.hive.ql.io.orc.OrcSerde"
stored as orc;
执行:hive -f employees_orc.sql
三、导入数据:
1. employees_ext 表导入employees表:
[[email protected] hive]# cat employees_ext-to-employees.sql
set hive.exec.dynamic.partition=true;
set hive.exec.dynamic.partition.mode=nonstrict;
set hive.eec.max.dynamic.partitions.pernode=1000;
insert overwrite table employees
partition(y)
select
emp_ext.id,
emp_ext.x1,
emp_ext.x2,
emp_ext.x3,
emp_ext.x4,
emp_ext.x5,
emp_ext.x6,
emp_ext.x7,
emp_ext.x8,
emp_ext.x9,
emp_ext.y
from employees_ext emp_ext;
执行:hive -f employees_ext-to-employees.sql。其部分log例如以下:
Partition default.employees{y=1} stats: [num_files: 1, num_rows: 0, total_size: 3622, raw_data_size: 0]
Partition default.employees{y=2} stats: [num_files: 1, num_rows: 0, total_size: 4060, raw_data_size: 0]
Partition default.employees{y=3} stats: [num_files: 1, num_rows: 0, total_size: 910, raw_data_size: 0]
Partition default.employees{y=5} stats: [num_files: 1, num_rows: 0, total_size: 699, raw_data_size: 0]
Partition default.employees{y=6} stats: [num_files: 1, num_rows: 0, total_size: 473, raw_data_size: 0]
Partition default.employees{y=7} stats: [num_files: 1, num_rows: 0, total_size: 13561851, raw_data_size: 0]
Table default.employees stats: [num_partitions: 6, num_files: 6, num_rows: 0, total_size: 13571615, raw_data_size: 0]
MapReduce Jobs Launched:
Job 0: Map: 1 Cumulative CPU: 6.78 sec HDFS Read: 13245660 HDFS Write: 13571615 SUCCESS
Total MapReduce CPU Time Spent: 6 seconds 780 msec
OK
Time taken: 186.743 seconds
查看hdfs文件大小:
[[email protected] hive]# hadoop fs -count /user/hive/warehouse/employees
7 6 13571615 /user/hive/warehouse/employees
查看hdfs文件内容:
bash-4.1$ hadoop fs -cat /user/hive/warehouse/employees/y=1/* | head -n 1
11.5210113.644.491.171.780.068.750.00.0
(截图的内容为输出,拷贝到代码块里面有问题)
2. employees_ext 表导入employees_orc表:
[[email protected] hive]# cat employees_ext-to-employees_orc.sql
set hive.exec.dynamic.partition=true;
set hive.exec.dynamic.partition.mode=nonstrict;
set hive.eec.max.dynamic.partitions.pernode=1000;
insert overwrite table employees_orc
partition(y)
select
emp_ext.id,
emp_ext.x1,
emp_ext.x2,
emp_ext.x3,
emp_ext.x4,
emp_ext.x5,
emp_ext.x6,
emp_ext.x7,
emp_ext.x8,
emp_ext.x9,
emp_ext.y
from employees_ext emp_ext;
执行:hive -f employees_ext-to-employees_orc.sql,其部分log例如以下:
Partition default.employees_orc{y=1} stats: [num_files: 1, num_rows: 0, total_size: 2355, raw_data_size: 0]
Partition default.employees_orc{y=2} stats: [num_files: 1, num_rows: 0, total_size: 2539, raw_data_size: 0]
Partition default.employees_orc{y=3} stats: [num_files: 1, num_rows: 0, total_size: 1290, raw_data_size: 0]
Partition default.employees_orc{y=5} stats: [num_files: 1, num_rows: 0, total_size: 1165, raw_data_size: 0]
Partition default.employees_orc{y=6} stats: [num_files: 1, num_rows: 0, total_size: 955, raw_data_size: 0]
Partition default.employees_orc{y=7} stats: [num_files: 1, num_rows: 0, total_size: 1424599, raw_data_size: 0]
Table default.employees_orc stats: [num_partitions: 6, num_files: 6, num_rows: 0, total_size: 1432903, raw_data_size: 0]
MapReduce Jobs Launched:
Job 0: Map: 1 Cumulative CPU: 7.84 sec HDFS Read: 13245660 HDFS Write: 1432903 SUCCESS
Total MapReduce CPU Time Spent: 7 seconds 840 msec
OK
Time taken: 53.014 seconds
查看hdfs文件大小:
[[email protected] hive]# hadoop fs -count /user/hive/warehouse/employees_orc
7 6 1432903 /user/hive/warehouse/employees_orc
查看hdfs文件内容:
?
3. 比較两者性能
?
? | 时间 | 压缩率 |
employees表: | 186.7秒 | 13571615/13245660=1.0246 |
employees_orc表: | 53.0秒 | 1432903/13245660=0.108 |
时间上来说,orc的表现方式会好非常多。同一时候压缩率也好非常多。
只是,这个測试是在本人虚拟机上測试的,并且是单机測试的,所以參考价值不是非常大,可是压缩率还是有一定參考价值的。
四、导出数据
1. employees表:
[[email protected] hive]# cat export_employees.sql
insert overwrite local directory ‘/opt/hivedata/employees.dat‘
row format delimited
fields terminated by ‘,‘
select
emp.id,
emp.x1,
emp.x2,
emp.x3,
emp.x4,
emp.x5,
emp.x6,
emp.x7,
emp.x8,
emp.x9,
emp.y
from employees emp
执行:hive -f export_employees.sql
部分log:
MapReduce Total cumulative CPU time: 9 seconds 630 msec
Ended Job = job_1398958404577_0007
Copying data to local directory /opt/hivedata/employees.dat
Copying data to local directory /opt/hivedata/employees.dat
MapReduce Jobs Launched:
Job 0: Map: 1 Cumulative CPU: 9.63 sec HDFS Read: 13572220 HDFS Write: 13978615 SUCCESS
Total MapReduce CPU Time Spent: 9 seconds 630 msec
OK
Time taken: 183.841 seconds
数据查看:
[[email protected] hive]# ll /opt/hivedata/employees.dat/
total 13652
-rw-r--r--. 1 root root 13978615 May 2 05:15 000000_0
[[email protected] hive]# head -n 1 /opt/hivedata/employees.dat/000000_0
1,1.52101,13.64,4.49,1.1,71.78,0.06,8.75,0.0,0.0,1
2. employees_orc表:
[[email protected] hive]# cat export_employees_orc.sql
insert overwrite local directory ‘/opt/hivedata/employees_orc.dat‘
row format delimited
fields terminated by ‘,‘
select
emp.id,
emp.x1,
emp.x2,
emp.x3,
emp.x4,
emp.x5,
emp.x6,
emp.x7,
emp.x8,
emp.x9,
emp.y
from employees_orc emp
执行 hive -f export_employees_orc.sql
部分log:
MapReduce Total cumulative CPU time: 4 seconds 920 msec
Ended Job = job_1398958404577_0008
Copying data to local directory /opt/hivedata/employees_orc.dat
Copying data to local directory /opt/hivedata/employees_orc.dat
MapReduce Jobs Launched:
Job 0: Map: 1 Cumulative CPU: 4.92 sec HDFS Read: 1451352 HDFS Write: 13978615 SUCCESS
Total MapReduce CPU Time Spent: 4 seconds 920 msec
OK
Time taken: 41.686 second
查看数据:
[[email protected] hive]# head -n 1 /opt/hivedata/employees_orc.dat/000000_0
1,1.52101,13.64,4.49,1.1,71.78,0.06,8.75,0.0,0.0,1
[[email protected] hive]# ll /opt/hivedata/employees_orc.dat/
total 13652
-rw-r--r--. 1 root root 13978615 May 2 05:18 000000_0
这里的数据和原始数据的大小不一样。原始数据是13245467, 而导出到本地的是13978615 。这是由于数据的精度问题,比如原始数据中的0都被存储为了0.0。
?
分享,成长。快乐
转载请注明blog地址:http://blog.csdn.net/fansy1990
?
?
?
以上是关于Hive实践(hive0.12)的主要内容,如果未能解决你的问题,请参考以下文章