Covisibility Graph

Posted liuzhenbo

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Covisibility Graph相关的知识,希望对你有一定的参考价值。

在Orb-Slam中有三个地图分别是Covisibility Graph,Spanning Graph,以及Essential Graph,它们三个分别是什么意思呢?

首先,图优化是目前视觉SLAM里主流的优化方式。其思想是把一个优化问题表达成图(Graph),以便我们理解、观察。如果题主想更清楚地认识图优化与SLAM的关系,可以参见

一个图中有很多顶点,以及连接各顶点的边。当它们表示一个优化问题时,顶点是待优化的变量,而是指误差项。我们把各个边的误差加到一起,就得到了整个优化问题的误差函数。

顶点的参数化形式可以有很多不同的样子。例如某些顶点可以表示相机的Pose,另一些顶点可以表示三维空间点。同理,边也有不同的形式。除了个别的顶点和边,我们也关心整个图的结构,例如连通性等。

一个不太恰当的例子(图来自FrameSLAM: From Bundle Adjustment to Real-Time Visual Mapping)。图中红色点可看成关键帧相机Pose,青色点表示空间点,蓝色和红色边表示Pose-Pose的边,而黄色边表示Pose-Point的边。(虽然这可能不是原图的意思,但我希望通过这个图可以帮助题主理解。)

技术图片

你问题当中的Covisibility Graph, Essential Graph,都是不同图的形式。Spanning graph理解成生成树更好一些。

如果我们考虑所有的相机 Pose 和所有点的空间位置,构造出的图将会非常复杂,而难以直接进行实时优化。因此,通常我们会构建一些带有特殊结构的图,以满足实时性的需要。

最简单的是Pose Graph。如果我们对特征点的空间位置并不关心,就可以构建只带有Pose结点,以及Pose-Pose边这样的图。由于一个照片中常常有上千个特征点,这样做可以节省许多计算量。

Covisilibilty Graph 的顶点是相机的Pose,而边是Pose-Pose的变换关系——所以也算是Pose Graph 一种吧。当两个相机看到相似的空间点时,它们对应的Pose就会产生联系(我们就可以根据这些空间点在照片上的投影计算两个相机间的运动)。根据观测到的空间点的数量,给这个边加上一个权值,度量这个边的可信程度。

Essential Graph 比Covisibility Graph更为简单,ORB-SLAM主要用它来进行全局优化。为了限制优化的规模,ORB-SLAM试图尽量减少优化边的数量。而尽量减少边,又保持连通性的方法,就是做一个最小生成树。

Covisibility 是一直在用的概念,而Essential Graph是orbslam自己提出的概念,为了减小全局回环的计算量。当你自己实现SLAM时,也会碰到这些困难,并设计一些应对的策略,这些就是你的创新性。事实上,随着SLAM时间的增长,如何控制图的结构和优化的规模,仍是现在SLAM有待解决的一个问题。

我的理解:

 

1.covisibility graph
顶点:相机的 pose
边:pose 和 pose 间的位置关系
权值:边的可信度(每条边都有自己的权值)

 

具体到orb_slam2上,其表示了,每个关键帧处的相机位置之间的关系“图”

 

2.essential graph
顶点:相机的 pose
边:pose 和 pose 间的位置关系
权值:边的可信度(每条边都有自己的权值)

 

是orb_slam2中主要用的“图”。
是对 covisibility graph 的优化(边最少、置信值高、保持连通性)

以上是关于Covisibility Graph的主要内容,如果未能解决你的问题,请参考以下文章