车牌识别01__车牌抠图(CNN深度学习—opencv实现方法)

Posted allen-gc

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了车牌识别01__车牌抠图(CNN深度学习—opencv实现方法)相关的知识,希望对你有一定的参考价值。

一、安装依赖

1、mac安装brem
/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"
2、mac安装opencv
brew install opencv
3、安装opencv-python
pip3.6 install -i https://pypi.tuna.tsinghua.edu.cn/simple opencv-python
参考以下地址
https://www.jianshu.com/p/797e5dc4a279
二、步骤解析
opencv解析图片的大概步骤
1、加载图片
2、把图片转化为灰度
3、利用高斯模糊、中值滤波进行消除噪音点(可以理解成tensorflow中的卷积和池化)
4、边缘检测
5、二值化:只显示黑白效果
6、进行膨胀和腐蚀,对边缘放大效果
7、查找轮廓(计算轮廓面积、找到轮廓的矩阵的坐标计算长宽比例,找到现实中物体合理的比例)
8、找到矩阵坐标,并根据原图进行剪切
三、代码呈现

import cv2
import numpy as np
import matplotlib.pyplot as plt

#1、imread加载图片
img = cv2.imread(‘0.jpg‘)

#2、将图像转换为灰度图

img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#
#2、高斯平滑模糊
#GaussianBlur(InputArray src, OutputArray dst, Size ksize, double sigmaX, double sigmaY=0, int borderType=BORDER_DEFAULT )
#Size ksize必须为正奇数
img = cv2.GaussianBlur(img, (3, 3), 0, 0, cv2.BORDER_DEFAULT)

#3、中值滤波(池化),消除噪音数据,medianBlur(InputArray src, OutputArray dst, int ksize)   ksize必须为奇数
img = cv2.medianBlur(img, 5)


#4、利用Sobel方法可以进行sobel边缘检测,突出边缘
img = cv2.Sobel(img, cv2.CV_8U, 1, 0, ksize=3)

#图像的二值化就是将图像上的像素点的灰度值设置为0或255,这样将使整个图像呈现出明显的黑白效果,<150的全为黑,>150的全为白
ret, binary = cv2.threshold(img, 150, 255, cv2.THRESH_BINARY)

#膨胀,让轮廓突出
element1 = cv2.getStructuringElement(cv2.MORPH_RECT, (9, 7))
img = cv2.dilate(binary, element1, iterations=1)
#腐蚀
element2 = cv2.getStructuringElement(cv2.MORPH_RECT, (9, 1))
img = cv2.erode(img, element2, iterations=1)
#膨胀,让轮廓更明显
img = cv2.dilate(img, element1, iterations=3)

###############################################
# 查找轮廓(img: 原始图像,contours:矩形坐标点,hierarchy:图像层次)
contours, hierarchy = cv2.findContours(img, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

max_ratio = -1
ratios = []
num = 0

for i in range(len(contours)):
    cnt = contours[i]

    #计算轮廓面积
    area = cv2.contourArea(cnt)
    if area < 1000:
        continue

    #四边形的最小外接矩形,得到最小外接矩形的(中心(x,y), (宽,高), 旋转角度)
    rect = cv2.minAreaRect(cnt)

    # 矩形的四个坐标(顺序不定,但是一定是一个左下角、左上角、右上角、右下角这种循环顺序(开始是哪个点未知))
    box = cv2.boxPoints(rect)
    # 转换为long类型
    box = np.int0(box)

    # 计算长宽高
    height = abs(box[0][1] - box[2][1])
    weight = abs(box[0][0] - box[2][0])
    ratio = float(weight) / float(height)
    # 正常的车牌宽高比在2.7~5之间
    if ratio > max_ratio:
        max_box = box

    if ratio > 5.5 or ratio < 2:
        continue

    num +=1
    ratios.append((max_box,ratio))


#返回就是车牌的矩阵的四个点的坐标
box = ratios[0][0]
print(box)
print(box[0,1])

ys = [box[0, 1], box[1, 1], box[2, 1], box[3, 1]]
print(ys)
xs = [box[0, 0], box[1, 0], box[2, 0], box[3, 0]]

ys_sorted_index = np.argsort(ys)
print(ys_sorted_index)
xs_sorted_index = np.argsort(xs)

# 获取x上的坐标
x1 = box[xs_sorted_index[0], 0]
print(x1)
x2 = box[xs_sorted_index[3], 0]
print(x2)

# 获取y上的坐标
y1 = box[ys_sorted_index[0], 1]
print(y1)
y2 = box[ys_sorted_index[3], 1]
#
img2 = cv2.imread(‘0.jpg‘)
# # 截取图像
img_plate = img2[y1:y2, x1:x2]
cv2.imwrite(‘test1.jpg‘, img_plate)

 

以上是关于车牌识别01__车牌抠图(CNN深度学习—opencv实现方法)的主要内容,如果未能解决你的问题,请参考以下文章

深度学习100例 - 卷积神经网络CNN实现车牌识别(万字长文全网首发)| 第15天

图像识别基于卷积神经网络CNN实现车牌识别matlab源码

图像识别基于卷积神经网络CNN实现车牌识别matlab源码

图像识别基于卷积神经网络CNN实现车牌识别matlab源码

图像识别基于卷积神经网络CNN实现车牌识别matlab源码

图像识别基于卷积神经网络CNN实现车牌识别matlab源码