PAT 1122 Hamiltonian Cycle
Posted cunyusup
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了PAT 1122 Hamiltonian Cycle相关的知识,希望对你有一定的参考价值。
The "Hamilton cycle problem" is to find a simple cycle that contains every vertex in a graph. Such a cycle is called a "Hamiltonian cycle".
In this problem, you are supposed to tell if a given cycle is a Hamiltonian cycle.
Input Specification:
Each input file contains one test case. For each case, the first line contains 2 positive integers N (2), the number of vertices, and M, the number of edges in an undirected graph. Then M lines follow, each describes an edge in the format Vertex1 Vertex2
, where the vertices are numbered from 1 to N. The next line gives a positive integer K which is the number of queries, followed by K lines of queries, each in the format:
n V?1?? V?2?? ... V?n??
where n is the number of vertices in the list, and V?i??‘s are the vertices on a path.
Output Specification:
For each query, print in a line YES
if the path does form a Hamiltonian cycle, or NO
if not.
Sample Input:
6 10
6 2
3 4
1 5
2 5
3 1
4 1
1 6
6 3
1 2
4 5
6
7 5 1 4 3 6 2 5
6 5 1 4 3 6 2
9 6 2 1 6 3 4 5 2 6
4 1 2 5 1
7 6 1 3 4 5 2 6
7 6 1 2 5 4 3 1
Sample Output:
YES NO NO NO YES NO
#include<bits/stdc++.h> using namespace std; typedef long long ll; #define MAXN 500 int n,m; int G[MAXN][MAXN] = {0}; int main(){ cin >> n >> m; for(int i=0;i < m;i++){ int x,y; cin >> x >> y; G[x][y] = G[y][x] = 1; } int K; cin >> K; while(K--){ int nnn; cin >> nnn; vector<int> temp; set<int> st; for(int i=0;i < nnn;i++){ int num;cin >> num; temp.push_back(num); st.insert(num); } int flag1=1; int flag2=1; if(st.size()!=n||nnn-1!=n||temp[0]!=temp[nnn-1]) flag1=0; for(int i=1;i < temp.size();i++){ if(!G[temp[i-1]][temp[i]])flag2=0; } if(flag1&&flag2) cout << "YES" << endl; else cout << "NO" << endl; } return 0; }
看了答案才知道这么简单,一开始理解错了题意,后来才发现他给的就是路径,难度就降低了
分析:1.设置falg1 判断节点是否多走、少走、或走成环
2.设置flag2 判断这条路能不能走通
3.当falg1、flag2都为1时是哈密尔顿路径,否则不是
以上是关于PAT 1122 Hamiltonian Cycle的主要内容,如果未能解决你的问题,请参考以下文章
PAT 1122 Hamiltonian Cycle[比较一般]