吴裕雄 python 机器学习——集成学习随机森林RandomForestRegressor回归模型
Posted tszr
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了吴裕雄 python 机器学习——集成学习随机森林RandomForestRegressor回归模型相关的知识,希望对你有一定的参考价值。
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklearn.model_selection import train_test_split def load_data_regression(): ‘‘‘ 加载用于回归问题的数据集 ‘‘‘ #使用 scikit-learn 自带的一个糖尿病病人的数据集 diabetes = datasets.load_diabetes() # 拆分成训练集和测试集,测试集大小为原始数据集大小的 1/4 return train_test_split(diabetes.data,diabetes.target,test_size=0.25,random_state=0) #集成学习随机森林RandomForestRegressor回归模型 def test_RandomForestRegressor(*data): X_train,X_test,y_train,y_test=data regr=ensemble.RandomForestRegressor() regr.fit(X_train,y_train) print("Traing Score:%f"%regr.score(X_train,y_train)) print("Testing Score:%f"%regr.score(X_test,y_test)) # 获取分类数据 X_train,X_test,y_train,y_test=load_data_regression() # 调用 test_RandomForestRegressor test_RandomForestRegressor(X_train,X_test,y_train,y_test)
def test_RandomForestRegressor_num(*data): ‘‘‘ 测试 RandomForestRegressor 的预测性能随 n_estimators 参数的影响 ‘‘‘ X_train,X_test,y_train,y_test=data nums=np.arange(1,100,step=2) fig=plt.figure() ax=fig.add_subplot(1,1,1) testing_scores=[] training_scores=[] for num in nums: regr=ensemble.RandomForestRegressor(n_estimators=num) regr.fit(X_train,y_train) training_scores.append(regr.score(X_train,y_train)) testing_scores.append(regr.score(X_test,y_test)) ax.plot(nums,training_scores,label="Training Score") ax.plot(nums,testing_scores,label="Testing Score") ax.set_xlabel("estimator num") ax.set_ylabel("score") ax.legend(loc="lower right") ax.set_ylim(-1,1) plt.suptitle("RandomForestRegressor") plt.show() # 调用 test_RandomForestRegressor_num test_RandomForestRegressor_num(X_train,X_test,y_train,y_test)
def test_RandomForestRegressor_max_depth(*data): ‘‘‘ 测试 RandomForestRegressor 的预测性能随 max_depth 参数的影响 ‘‘‘ X_train,X_test,y_train,y_test=data maxdepths=range(1,20) fig=plt.figure() ax=fig.add_subplot(1,1,1) testing_scores=[] training_scores=[] for max_depth in maxdepths: regr=ensemble.RandomForestRegressor(max_depth=max_depth) regr.fit(X_train,y_train) training_scores.append(regr.score(X_train,y_train)) testing_scores.append(regr.score(X_test,y_test)) ax.plot(maxdepths,training_scores,label="Training Score") ax.plot(maxdepths,testing_scores,label="Testing Score") ax.set_xlabel("max_depth") ax.set_ylabel("score") ax.legend(loc="lower right") ax.set_ylim(0,1.05) plt.suptitle("RandomForestRegressor") plt.show() # 调用 test_RandomForestRegressor_max_depth test_RandomForestRegressor_max_depth(X_train,X_test,y_train,y_test)
def test_RandomForestRegressor_max_features(*data): ‘‘‘ 测试 RandomForestRegressor 的预测性能随 max_features 参数的影响 ‘‘‘ X_train,X_test,y_train,y_test=data max_features=np.linspace(0.01,1.0) fig=plt.figure() ax=fig.add_subplot(1,1,1) testing_scores=[] training_scores=[] for max_feature in max_features: regr=ensemble.RandomForestRegressor(max_features=max_feature) regr.fit(X_train,y_train) training_scores.append(regr.score(X_train,y_train)) testing_scores.append(regr.score(X_test,y_test)) ax.plot(max_features,training_scores,label="Training Score") ax.plot(max_features,testing_scores,label="Testing Score") ax.set_xlabel("max_feature") ax.set_ylabel("score") ax.legend(loc="lower right") ax.set_ylim(0,1.05) plt.suptitle("RandomForestRegressor") plt.show() # 调用 test_RandomForestRegressor_max_features test_RandomForestRegressor_max_features(X_train,X_test,y_train,y_test)
以上是关于吴裕雄 python 机器学习——集成学习随机森林RandomForestRegressor回归模型的主要内容,如果未能解决你的问题,请参考以下文章
吴裕雄 python 机器学习——集成学习AdaBoost算法回归模型
吴裕雄 python 机器学习——集成学习AdaBoost算法分类模型
吴裕雄 python 机器学习——集成学习梯度提升决策树GradientBoostingClassifier分类模型
吴裕雄 python 机器学习——集成学习梯度提升决策树GradientBoostingRegressor回归模型