关于自定义sparkSQL数据源(Hbase)操作中遇到的坑

Posted niutao

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了关于自定义sparkSQL数据源(Hbase)操作中遇到的坑相关的知识,希望对你有一定的参考价值。

技术图片

 

自定义sparkSQL数据源的过程中,需要对sparkSQL表的schema和Hbase表的schema进行整合;

对于spark来说,要想自定义数据源,你就必须得实现这3个接口:

BaseRelation 代表了一个抽象的数据源。该数据源由一行行有着已知schema的数据组成(关系表)。
TableScan 用于扫描整张表,将数据返回成RDD[Row]。
RelationProvider 顾名思义,根据用户提供的参数返回一个数据源(BaseRelation)。

所以,如果对接Hbase的话,就定义一个Hbase的relation

class DefaultSource extends RelationProvider {
  def createRelation(sqlContext: SQLContext, parameters: Map[String, String]) = {
    HBaseRelation(parameters)(sqlContext)
  }
}
技术图片
case class HBaseRelation(@transient val hbaseProps: Map[String,String])(@transient val sqlContext: SQLContext) extends BaseRelation with Serializable with TableScan{

  val hbaseTableName =  hbaseProps.getOrElse("hbase_table_name", sys.error("not valid schema"))
  val hbaseTableSchema =  hbaseProps.getOrElse("hbase_table_schema", sys.error("not valid schema"))
  val registerTableSchema = hbaseProps.getOrElse("sparksql_table_schema", sys.error("not valid schema"))
  val rowRange = hbaseProps.getOrElse("row_range", "->")
  //get star row and end row
  val range = rowRange.split("->",-1)
  val startRowKey = range(0).trim
  val endRowKey = range(1).trim
  val tempHBaseFields = extractHBaseSchema(hbaseTableSchema) //do not use this, a temp field
  val registerTableFields = extractRegisterSchema(registerTableSchema)
  val tempFieldRelation = tableSchemaFieldMapping(tempHBaseFields,registerTableFields)
  val hbaseTableFields = feedTypes(tempFieldRelation)
  val fieldsRelations =  tableSchemaFieldMapping(hbaseTableFields,registerTableFields)
  val queryColumns =  getQueryTargetCloumns(hbaseTableFields)
  def feedTypes( mapping: Map[HBaseSchemaField, RegisteredSchemaField]) :  Array[HBaseSchemaField] = {
    val hbaseFields = mapping.map{
      case (k,v) =>
        val field = k.copy(fieldType=v.fieldType)
        field
    }
    hbaseFields.toArray
  }




  def isRowKey(field: HBaseSchemaField) : Boolean = {
    val cfColArray = field.fieldName.split(":",-1)
    val cfName = cfColArray(0)
    val colName =  cfColArray(1)
    if(cfName=="" && colName=="key") true else false
  }

  
  def getQueryTargetCloumns(hbaseTableFields: Array[HBaseSchemaField]): String = {
    var str = ArrayBuffer[String]()
    hbaseTableFields.foreach{ field=>
      if(!isRowKey(field)) {
        str.append(field.fieldName)
      }
    }
    println(str.mkString(" "))
    str.mkString(" ")
  }
  lazy val schema = {
    val fields = hbaseTableFields.map{ field=>
      val name  = fieldsRelations.getOrElse(field, sys.error("table schema is not match the definition.")).fieldName
      val relatedType =  field.fieldType match  {
        case "String" =>
          SchemaType(StringType,nullable = false)
        case "Int" =>
          SchemaType(IntegerType,nullable = false)
        case "Long" =>
          SchemaType(LongType,nullable = false)
        case "Double" =>
          SchemaType(DoubleType,nullable = false)

      }
      StructField(name,relatedType.dataType,relatedType.nullable)
    }
    StructType(fields)
  }
  

  def tableSchemaFieldMapping( externalHBaseTable: Array[HBaseSchemaField],  registerTable : Array[RegisteredSchemaField]): Map[HBaseSchemaField, RegisteredSchemaField] = {
    if(externalHBaseTable.length != registerTable.length) sys.error("columns size not match in definition!")
    val rs: Array[(HBaseSchemaField, RegisteredSchemaField)] = externalHBaseTable.zip(registerTable)
    rs.toMap
  }


  /**
    * spark sql schema will be register
    *   registerTableSchema   ‘(rowkey string, value string, column_a string)‘
    */
  def extractRegisterSchema(registerTableSchema: String) : Array[RegisteredSchemaField] = {
    val fieldsStr = registerTableSchema.trim.drop(1).dropRight(1)
    val fieldsArray = fieldsStr.split(",").map(_.trim)//sorted
    fieldsArray.map{ fildString =>
      val splitedField = fildString.split("\\\\s+", -1)//sorted
      RegisteredSchemaField(splitedField(0), splitedField(1))
    }
  }

  
  def extractHBaseSchema(externalTableSchema: String) : Array[HBaseSchemaField] = {
    val fieldsStr = externalTableSchema.trim.drop(1).dropRight(1)
    val fieldsArray = fieldsStr.split(",").map(_.trim)
    fieldsArray.map(fildString => HBaseSchemaField(fildString,""))
  }

  // By making this a lazy val we keep the RDD around, amortizing the cost of locating splits.
  lazy val buildScan = {

    val hbaseConf = HBaseConfiguration.create()
    hbaseConf.set("hbase.zookeeper.quorum", GlobalConfigUtils.hbaseQuorem)
    hbaseConf.set(TableInputFormat.INPUT_TABLE, hbaseTableName)
    hbaseConf.set(TableInputFormat.SCAN_COLUMNS, queryColumns)
    hbaseConf.set(TableInputFormat.SCAN_ROW_START, startRowKey)
    hbaseConf.set(TableInputFormat.SCAN_ROW_STOP, endRowKey)

    val hbaseRdd = sqlContext.sparkContext.newAPIHadoopRDD(
      hbaseConf,
      classOf[org.apache.hadoop.hbase.mapreduce.TableInputFormat],
      classOf[org.apache.hadoop.hbase.io.ImmutableBytesWritable],
      classOf[org.apache.hadoop.hbase.client.Result]
    )

    val rs = hbaseRdd.map(tuple => tuple._2).map(result => {
      var values = new ArrayBuffer[Any]()
      hbaseTableFields.foreach{field=>
        values += Resolver.resolve(field,result)
      }
      Row.fromSeq(values.toSeq)
    })
    rs
  }

  private case class SchemaType(dataType: DataType, nullable: Boolean)
}
HBaseRelation

Hbase的schema:

技术图片
package object hbase {

  abstract class SchemaField extends Serializable

  case class RegisteredSchemaField(fieldName: String, fieldType: String)  extends  SchemaField  with Serializable

  case class HBaseSchemaField(fieldName: String, fieldType: String)  extends  SchemaField  with Serializable

  case class Parameter(name: String)
  //sparksql_table_schema
  protected  val SPARK_SQL_TABLE_SCHEMA = Parameter("sparksql_table_schema")
  protected  val HBASE_TABLE_NAME = Parameter("hbase_table_name")
  protected  val HBASE_TABLE_SCHEMA = Parameter("hbase_table_schema")
  protected  val ROW_RANGE = Parameter("row_range")

  /**
    * Adds a method, `hbaseTable`, to SQLContext that allows reading data stored in hbase table.
    */
  implicit class HBaseContext(sqlContext: SQLContext) {
    def hbaseTable(sparksqlTableSchema: String, hbaseTableName: String, hbaseTableSchema: String, rowRange: String = "->") = {
      var params = new HashMap[String, String]
      params += ( SPARK_SQL_TABLE_SCHEMA.name -> sparksqlTableSchema)
      params += ( HBASE_TABLE_NAME.name -> hbaseTableName)
      params += ( HBASE_TABLE_SCHEMA.name -> hbaseTableSchema)
      //get star row and end row
      params += ( ROW_RANGE.name -> rowRange)
      sqlContext.baseRelationToDataFrame(HBaseRelation(params)(sqlContext))
    }
  }
}
View Code

 

当然了,其中schema的数据类型也得处理下:

技术图片
object Resolver extends  Serializable {
  def resolve (hbaseField: HBaseSchemaField, result: Result ): Any = {
    val cfColArray = hbaseField.fieldName.split(":",-1)
    val cfName = cfColArray(0)
    val colName =  cfColArray(1)
    var fieldRs: Any = null
    //resolve row key otherwise resolve column
    if(cfName=="" && colName=="key") {
      fieldRs = resolveRowKey(result, hbaseField.fieldType)
    } else {
      fieldRs =  resolveColumn(result, cfName, colName,hbaseField.fieldType)
    }
    fieldRs
  }

  def resolveRowKey (result: Result, resultType: String): Any = {
    val rowkey = resultType match {
      case "String" =>
        result.getRow.map(_.toChar).mkString
      case "Int" =>
        result  .getRow.map(_.toChar).mkString.toInt
      case "Long" =>
        result.getRow.map(_.toChar).mkString.toLong
      case "Float" =>
        result.getRow.map(_.toChar).mkString.toLong
      case "Double" =>
        result.getRow.map(_.toChar).mkString.toDouble
    }
    rowkey
  }

  def resolveColumn (result: Result, columnFamily: String, columnName: String, resultType: String): Any = {

    val column = result.containsColumn(columnFamily.getBytes, columnName.getBytes) match{
      case true =>{
        resultType match {
          case "String" =>
            Bytes.toString(result.getValue(columnFamily.getBytes,columnName.getBytes))
          case "Int" =>
            Bytes.toInt(result.getValue(columnFamily.getBytes,columnName.getBytes))
          case "Long" =>
            Bytes.toLong(result.getValue(columnFamily.getBytes,columnName.getBytes))
          case "Float" =>
            Bytes.toFloat(result.getValue(columnFamily.getBytes,columnName.getBytes))
          case "Double" =>
            Bytes.toDouble(result.getValue(columnFamily.getBytes,columnName.getBytes))

        }
      }
      case _ => {
        resultType match {
          case "String" =>
            ""
          case "Int" =>
            0
          case "Long" =>
            0
          case "Double" =>
            0.0
        }
      }
    }
    column
  }
}
Resolver

做个测试:

技术图片
object CustomHbaseTest {
  def main(args: Array[String]): Unit = {
    val startTime = System.currentTimeMillis()
    val sparkConf: SparkConf = new SparkConf()
      .setMaster("local[6]")
      .setAppName("query")
      .set("spark.worker.timeout" , GlobalConfigUtils.sparkWorkTimeout)
      .set("spark.cores.max" , GlobalConfigUtils.sparkMaxCores)
      .set("spark.rpc.askTimeout" , GlobalConfigUtils.sparkRpcTimeout)
      .set("spark.task.macFailures" , GlobalConfigUtils.sparkTaskMaxFailures)
      .set("spark.speculation" , GlobalConfigUtils.sparkSpeculation)
      .set("spark.driver.allowMutilpleContext" , GlobalConfigUtils.sparkAllowMutilpleContext)
      .set("spark.serializer" , GlobalConfigUtils.sparkSerializer)
      .set("spark.buffer.pageSize" , GlobalConfigUtils.sparkBuferSize)
      .set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
      .set("spark.driver.host", "localhost")
    val sparkSession: SparkSession = SparkSession.builder()
      .config(sparkConf)
      .enableHiveSupport() //开启支持hive
      .getOrCreate()
    var hbasetable = sparkSession
      .read
      .format("com.df.test_custom.customSource")
      .options(
        Map(
          "sparksql_table_schema" -> "(id String, create_time String , open_lng String , open_lat String , begin_address_code String , charge_mileage String , city_name String , vehicle_license String)",
          "hbase_table_name" -> "order_info",
          "hbase_table_schema" -> "(MM:id , MM:create_time , MM:open_lng , MM:open_lat , MM:begin_address_code , MM:charge_mileage , MM:city_name  , MM:vehicle_license)"
    )).load()

    hbasetable.createOrReplaceTempView("orderData")

    sparkSession.sql(
      """
        |select * from orderData
      """.stripMargin).show()
    val endTime = System.currentTimeMillis()
    println(s"花费时间:${endTime - startTime}")
  }
}
test

所有代码整合完毕之后,跑通了,但是确发现查询出来的数据和具体的列值对不上

比如:

var hbasetable = sparkSession
      .read
      .format("com.df.test_custom.customSource")
      .options(
        Map(
          "sparksql_table_schema" -> "(id String, create_time String , open_lng String , open_lat String , begin_address_code String , charge_mileage String , city_name String , vehicle_license String)",
          "hbase_table_name" -> "order_info",
          "hbase_table_schema" -> "(MM:id , MM:create_time , MM:open_lng , MM:open_lat , MM:begin_address_code , MM:charge_mileage , MM:city_name  , MM:vehicle_license)"
    )).load()

我指定的sparkSQL表的schema和Hbase的schema如上面的代码;

但是我查询出来的数据是这样的:

hbasetable.createOrReplaceTempView("orderData")

    sparkSession.sql(
      """
        |select * from orderData
      """.stripMargin).show()

技术图片

从上面的图可以看到,其实好多列的顺序对不上了!

问题所在的原因:

def tableSchemaFieldMapping( externalHBaseTable: Array[HBaseSchemaField],  registerTable : Array[RegisteredSchemaField]): Map[HBaseSchemaField, RegisteredSchemaField] = {
    if(externalHBaseTable.length != registerTable.length) sys.error("columns size not match in definition!")
    val rs: Array[(HBaseSchemaField, RegisteredSchemaField)] = externalHBaseTable.zip(registerTable)

    rs.toMap
  }

可以看到,最后是---------->  rs.toMap

您注意了,scala中的这个map是不能保证顺序的,举个栗子:

object TestMap {
  def main(args: Array[String]): Unit = {
    val arr1 = Array("java" , "scla" , "javascripe" , "ii" , "wqe" , "qaz")
    val arr2 = Array("java" , "scla" , "javascripe" , "ii" , "wqe" , "qaz")
    val toMap: Map[String, String] = arr1.zip(arr2).toMap
    for((k,v) <- toMap){
      println(s"k :${k} , v:${v}")
    }
  }
}

结果是这样的:

技术图片

明显发现,这个结果没按照最初zip后的顺序来,问题其实就是在toMap这里

解决:

在jdk1.5之后,给出了一个可以保持插入顺序强相关的Map,就是 :LinkedHashMap

所以说,解决方案就是,将scala中的Map转成LinkedHashMap

1):修改feedTypes

  def feedTypes( mapping: util.LinkedHashMap[HBaseSchemaField, RegisteredSchemaField]) :  Array[HBaseSchemaField] = {
    val hbaseFields = mapping.map{
      case (k,v) =>
        val field = k.copy(fieldType=v.fieldType)
        field
    }
    hbaseFields.toArray
  }

//  def feedTypes( mapping: Map[HBaseSchemaField, RegisteredSchemaField]) :  Array[HBaseSchemaField] = {
//    val hbaseFields = mapping.map{
//      case (k,v) =>
//        val field = k.copy(fieldType=v.fieldType)
//        field
//    }
//    hbaseFields.toArray
//  }

2):修改tableSchemaFieldMapping

  def tableSchemaFieldMapping( externalHBaseTable: Array[HBaseSchemaField],  registerTable : Array[RegisteredSchemaField]): util.LinkedHashMap[HBaseSchemaField, RegisteredSchemaField] = {
    if(externalHBaseTable.length != registerTable.length) sys.error("columns size not match in definition!")
    val rs: Array[(HBaseSchemaField, RegisteredSchemaField)] = externalHBaseTable.zip(registerTable)
    val linkedHashMap = new util.LinkedHashMap[HBaseSchemaField, RegisteredSchemaField]()
    for(arr <- rs){
      linkedHashMap.put(arr._1 , arr._2)
    }
    linkedHashMap
  }

//  def tableSchemaFieldMapping( externalHBaseTable: Array[HBaseSchemaField],  registerTable : Array[RegisteredSchemaField]): Map[HBaseSchemaField, RegisteredSchemaField] = {
//    if(externalHBaseTable.length != registerTable.length) sys.error("columns size not match in definition!")
//    val rs: Array[(HBaseSchemaField, RegisteredSchemaField)] = externalHBaseTable.zip(registerTable)
//    rs.toMap
//  }

然后在跑test代码:结果

技术图片

跑通!!!

PS:直接赋值我的代码就能用了

另外:

var hbasetable = sparkSession
      .read
      .format("com.df.test_custom.customSource")
      .options(
        Map(
          "sparksql_table_schema" -> "(id String, create_time String , open_lng String , open_lat String , begin_address_code String , charge_mileage String , city_name String , vehicle_license String)",
          "hbase_table_name" -> "order_info",
          "hbase_table_schema" -> "(MM:id , MM:create_time , MM:open_lng , MM:open_lat , MM:begin_address_code , MM:charge_mileage , MM:city_name  , MM:vehicle_license)"
    )).load()
sparksql_table_schema和hbase_table_schema 顺序必须一样

 

以上是关于关于自定义sparkSQL数据源(Hbase)操作中遇到的坑的主要内容,如果未能解决你的问题,请参考以下文章

sparkSQL自定义数据源

sparkSQL自定义数据源查询HBase数据

SparkSQL同步Hbase数据到Hive表

SparkSQL电商用户画像之电商用户画像数据可视化

sparksql udf自定义函数中参数过多问题的解决

SparkSQL自定义无类型聚合函数