背包型动态规划
Posted lizzyluvcoding
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了背包型动态规划相关的知识,希望对你有一定的参考价值。
92. Backpack
可行性
https://www.lintcode.com/problem/backpack/description?_from=ladder&&fromId=16
public class Solution { /** * @param m: An integer m denotes the size of a backpack * @param A: Given n items with size A[i] * @return: The maximum size */ public int backPack(int m, int[] A) { // write your code here int n = A.length; if(n==0){ return 0; } //前i个物品拼出j的重量 boolean[][] f = new boolean[n+1][m+1]; for(int i =1;i<=m;i++){ f[0][i]= false; } f[0][0]= true; for(int i=1;i<=n;i++){ for(int w =0;w<=m;w++){ f[i][w] = f[i-1][w]; if(w>=A[i-1]){ f[i][w]=(f[i][w] || f[i-1][w-A[i-1]]); } } } for(int i = m;i>=0;i--){ if(f[n][i]){ return i; } } return 0; } }
滚动数组优化版:
public class Solution { /** * @param m: An integer m denotes the size of a backpack * @param A: Given n items with size A[i] * @return: The maximum size */ public int backPack(int m, int[] A) { // write your code here int n = A.length; if(n==0){ return 0; } //前i个物品拼出j的重量 boolean[][] f = new boolean[n+1][m+1]; int old =0; int now =0; for(int i =1;i<=m;i++){ f[now][i]= false; } f[now][0]= true; for(int i=1;i<=n;i++){ old = now; now = 1-now; for(int w =0;w<=m;w++){ f[now][w] = f[old][w]; if(w>=A[i-1]){ f[now][w]=(f[now][w] || f[old][w-A[i-1]]); } } } for(int i = m;i>=0;i--){ if(f[now][i]){ return i; } } return 0; } }
正整数求和可考虑背包问题
563. Backpack V
计数型
https://www.lintcode.com/problem/backpack-v/?_from=ladder&&fromId=16
public class Solution { /** * @param nums: an integer array and all positive numbers * @param target: An integer * @return: An integer */ //f[i][w] = f[i-1][w]+f[i-1][w-A[j]] //初始条件:f[0][0] = 1 // f[0][1...m] = 0; public int backPackV(int[] nums, int target) { // write your code here if(nums==null || nums.length==0){ return 0; } int n = nums.length; int[][] f = new int[n+1][target+1]; for(int i=1;i<=target;i++){ f[0][i] =0; } f[0][0] = 1; for(int i =1;i<=n;i++){ for(int w =0;w<=target;w++){ f[i][w]= f[i-1][w]; if(w>=nums[i-1]){ f[i][w]+=f[i-1][w-nums[i-1]]; } } } return f[n][target]; } }
空间优化成一维滚动数组
public class Solution { /** * @param nums: an integer array and all positive numbers * @param target: An integer * @return: An integer */ //f[i][w] = f[i-1][w]+f[i-1][w-A[j]] //初始条件:f[0][0] = 1 // f[0][1...m] = 0; public int backPackV(int[] nums, int target) { // write your code here if(nums==null || nums.length==0){ return 0; } int n = nums.length; int[] f = new int[target+1]; for(int i=1;i<=target;i++){ f[i] =0; } f[0] = 1; for(int i =1;i<=n;i++){ //right -> left for(int w =target;w>=nums[i-1];w--){ f[w]+=f[w-nums[i-1]]; //overwrit } } return f[target]; } }
564. Combination Sum IV
计数型
https://www.lintcode.com/problem/combination-sum-iv/description?_from=ladder&&fromId=16
public class Solution { /** * @param nums: an integer array and all positive numbers, no duplicates * @param target: An integer * @return: An integer */ public int backPackVI(int[] nums, int target) { // write your code here if(nums==null || nums.length==0){ return 0; } if(target==0){ return 0; } int[] f = new int[target+1]; f[0]=1; for(int i =1;i<=target;i++){ for(int j=0;j<nums.length;j++){ if(i>=nums[j]) f[i]+=f[i-nums[j]]; } } return f[target]; } }
125. Backpack II
最值型
https://www.lintcode.com/problem/backpack-ii/description?_from=ladder&&fromId=16
public class Solution { /** * @param m: An integer m denotes the size of a backpack * @param A: Given n items with size A[i] * @param V: Given n items with value V[i] * @return: The maximum value */ public int backPackII(int m, int[] A, int[] V) { // write your code here if(A==null || A.length==0 || V==null || V.length ==0){ return 0; } int n = A.length; int[][] f = new int[n+1][m+1]; f[0][0] = 0; for(int i =1;i<=m;i++){ f[0][i] = -1; } for(int i=1;i<=n;i++){ for(int w=0;w<=m;w++){ f[i][w] = f[i-1][w]; if(w>=A[i-1] && f[i-1][w-A[i-1]]!=-1){ f[i][w] = Math.max(f[i][w],f[i-1][w-A[i-1]]+V[i-1]); } } } int res = 0; for(int i =0;i<=m;i++){ res = Math.max(res,f[n][i]); } return res; } }
440. Backpack III
最值型
https://www.lintcode.com/problem/backpack-iii/description?_from=ladder&&fromId=16
思路:由Backpack II扩展出来,设k为i-1物体取用次数
public class Solution { /** * @param A: an integer array * @param V: an integer array * @param m: An integer * @return: an array */ public int backPackIII(int[] A, int[] V, int m) { // write your code here if(A==null || A.length==0 || V==null || V.length==0){ return 0; } int n = A.length; int[][]f = new int[n+1][m+1]; f[0][0] = 0; for(int i=1;i<=m;i++){ f[0][i]=-1; } for(int i=1;i<=n;i++){ for(int w=0;w<=m;w++){ f[i][w] = f[i-1][w]; int currW = w; int k =1; while(currW>=A[i-1]){ if(f[i-1][currW-A[i-1]]!=-1){ f[i][w] = Math.max(f[i][w],f[i-1][currW-A[i-1]]+V[i-1]*k); } currW-=A[i-1]; k++; } } } int res = 0; for(int i=1;i<=m;i++){ res = Math.max(res,f[n][i]); } return res; } }
优化1:观察公式,进行简化
优化思路,其实最后一个无论取几次,都相当于k-1次取值f[i][w-A[i-1]]+V[i-1];
public class Solution { /** * @param A: an integer array * @param V: an integer array * @param m: An integer * @return: an array */ public int backPackIII(int[] A, int[] V, int m) { // write your code here if(A==null || A.length==0 || V==null || V.length==0){ return 0; } int n = A.length; int[][]f = new int[n+1][m+1]; f[0][0] = 0; for(int i=1;i<=m;i++){ f[0][i]=-1; } for(int i=1;i<=n;i++){ for(int w=0;w<=m;w++){ f[i][w] = f[i-1][w]; //优化思路,其实最后一个无论取几次,都相当于k-1次取值f[i][w-A[i-1]]+V[i-1]; if(w>=A[i-1] && f[i][w-A[i-1]]!=-1){ f[i][w] = Math.max(f[i][w],f[i][w-A[i-1]]+V[i-1]); } } } int res = 0; for(int i=1;i<=m;i++){ res = Math.max(res,f[n][i]); } return res; } }
优化2:画图之后改成一维滚动数组
public class Solution { /** * @param A: an integer array * @param V: an integer array * @param m: An integer * @return: an array */ public int backPackIII(int[] A, int[] V, int m) { // write your code here if(A==null || A.length==0 || V==null || V.length==0){ return 0; } int n = A.length; int[]f = new int[m+1]; f[0] = 0; for(int i=1;i<=m;i++){ f[i]=-1; } for(int i=1;i<=n;i++){ for(int w=0;w<=m;w++){ //优化思路,其实最后一个无论取几次,都相当于k-1次取值f[i][w-A[i-1]]+V[i-1]; if(w>=A[i-1] && f[w-A[i-1]]!=-1){ f[w] = Math.max(f[w],f[w-A[i-1]]+V[i-1]); } } } int res = 0; for(int i=1;i<=m;i++){ res = Math.max(res,f[i]); } return res; } }
以上是关于背包型动态规划的主要内容,如果未能解决你的问题,请参考以下文章