使用hadoop mapreduce分析mongodb数据:
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了使用hadoop mapreduce分析mongodb数据:相关的知识,希望对你有一定的参考价值。
在上一篇使用hadoop mapreduce分析mongodb数据:(1)中,介绍了如何使用Hadoop MapReduce连接MongoDB数据库以及如何处理数据库,本文结合一个案例来进一步说明Hadoop MapReduce处理MongoDB的细节
- 原始数据
-
> db.stackin.find({}) { "_id" : ObjectId("575ce909aa02c3b21f1be0bb"), "summary" : "good good day", "url" : "url_1" } { "_id" : ObjectId("575ce909aa02c3b21f1be0bc"), "summary" : "hello world good world", "url" : "url_2" } { "_id" : ObjectId("575ce909aa02c3b21f1be0bd"), "summary" : "hello world good hello good", "url" : "url_3" } { "_id" : ObjectId("575ce909aa02c3b21f1be0be"), "summary" : "hello world hello", "url" : "url_4" }
每一个记录表示一个网页,summary对应的值是网页的文章,url对应的值是该文章的链接
- 目标结果
-
> db.stackout.find({}) { "_id" : "world", "data" : [ { "url_2" : 2 }, { "url_3" : 1 }, { "url_4" : 1 } ], "index" : 0, "maxindex" : 3 } { "_id" : "good", "data" : [ { "url_1" : 2 }, { "url_2" : 1 }, { "url_3" : 2 } ], "index" : 0, "maxindex" : 3 } { "_id" : "day", "data" : [ { "url_1" : 1 } ], "index" : 0, "maxindex" : 1 } { "_id" : "hello", "data" : [ { "url_2" : 1 }, { "url_3" : 2 }, { "url_4" : 2 } ], "index" : 0, "maxindex" : 3 }
我们需要统计每个单词在每个网页中分别出现的次数,从结果可知,单词world在每个url出现的次数
- 设计代码
1 import java.util.*; 2 import java.io.*; 3 4 import org.bson.*; 5 6 import com.mongodb.hadoop.MongoInputFormat; 7 import com.mongodb.hadoop.MongoOutputFormat; 8 import com.mongodb.hadoop.io.BSONWritable; 9 10 import org.apache.hadoop.conf.Configuration; 11 import org.apache.hadoop.io.*; 12 import org.apache.hadoop.mapreduce.*; 13 14 15 public class WordCount { 16 17 public static class TokenizerMapper extends Mapper<Object, BSONObject, Text, BSONWritable> { 18 //private final static 19 private Text word = new Text(); 20 21 public void map(Object key, BSONObject value, Context context ) 22 throws IOException, InterruptedException { 23 String url = value.get("url").toString(); 24 StringTokenizer itr = new StringTokenizer(value.get("summary").toString(). 25 replaceAll("\\\\p{Punct}|\\\\d","").replaceAll("\\r\\n", " ").replace("\\r", " "). 26 replace("\\n", " ").toLowerCase()); 27 while (itr.hasMoreTokens()) { 28 word.set(itr.nextToken()); 29 BasicBSONObject urlCounts = new BasicBSONObject(); 30 urlCounts.put(url, 1); 31 context.write(word, new BSONWritable(urlCounts)); 32 } 33 } 34 } 35 36 public static class IntSumReducer extends Reducer<Text, BSONWritable, Text, BSONWritable> { 37 //private BasicBSONObject result = new BasicBSONObject(); 38 39 public void reduce(Text key, Iterable<BSONWritable> values, Context context) 40 throws IOException, InterruptedException { 41 HashMap<String, Integer> mymap = new HashMap<String, Integer>(); 42 BasicBSONObject result = new BasicBSONObject(); 43 BasicBSONObject urlcount = new BasicBSONObject(); 44 for (BSONWritable val : values) { 45 @SuppressWarnings("unchecked") 46 BSONObject temp2 = val.getDoc(); 47 @SuppressWarnings("unchecked") 48 HashMap<String, Integer> temp = (HashMap<String, Integer>) val.getDoc().toMap(); 49 for (Map.Entry<String, Integer> entry : temp.entrySet()) { 50 if (mymap.containsKey(entry.getKey())) { 51 mymap.put(entry.getKey(), entry.getValue()+1); 52 } 53 else { 54 mymap.put(entry.getKey(), 1); 55 } 56 } 57 } 58 result.putAll(mymap); 59 context.write(key, new BSONWritable(result)); 60 } 61 } 62 63 public static void main(String[] args) throws Exception { 64 Configuration conf = new Configuration(); 65 conf.set( "mongo.input.uri" , "mongodb://localhost/stackoverflow.stackin" ); 66 conf.set( "mongo.output.uri" , "mongodb://localhost/stackoverflow.stackout" ); 67 @SuppressWarnings("deprecation") 68 Job job = new Job(conf, "word count"); 69 job.setJarByClass(WordCount.class); 70 job.setMapperClass(TokenizerMapper.class); 71 //job.setCombinerClass(IntSumReducer.class); 72 job.setReducerClass(IntSumReducer.class); 73 job.setMapOutputKeyClass(Text.class); 74 job.setMapOutputValueClass(BSONWritable.class); 75 job.setOutputKeyClass(Text.class); 76 job.setOutputValueClass(BSONWritable.class); 77 job.setInputFormatClass( MongoInputFormat.class ); 78 job.setOutputFormatClass( MongoOutputFormat.class ); 79 System.exit(job.waitForCompletion(true) ? 0 : 1); 80 } 81 }
设计的思路是,在map部分得到一个word以及键为url值为1的Bson对象,然后写入content中。对应的,在reduce部分对传入的值进行统计。
总结:本案例很简单,但是需要明白Hadoop MapReduce的原理以及mongo-hadoop API中对象的使用。如果有疑问,可以在评论区提出~
以上是关于使用hadoop mapreduce分析mongodb数据:的主要内容,如果未能解决你的问题,请参考以下文章
Hadoop2 使用 YARN 运行 MapReduce 的过程源码分析
使用hadoop mapreduce分析mongodb数据:
Big Data - Hadoop - MapReduce初学Hadoop之图解MapReduce与WordCount示例分析