完美理论(最大权闭合子图)
Posted luoyibujue
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了完美理论(最大权闭合子图)相关的知识,希望对你有一定的参考价值。
/*
最大权闭合子图模型
枚举根, 然后选择包含根的连通块
那么就是选择儿子必须选择它的父亲
依赖关系就能够建立了
可以在这里提交 https://vijos.org/d/fastle/p/1011
*/
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iostream>
#include<queue>
#define ll long long
#define M 111
#define mmp make_pair
using namespace std;
int read()
{
int nm = 0, f = 1;
char c = getchar();
for(; !isdigit(c); c = getchar()) if(c == '-') f = -1;
for(; isdigit(c); c = getchar()) nm = nm * 10 + c - '0';
return nm * f;
}
const int inf = 0x3e3e3e3e;
int head[M], to[M * M], nxt[M * M], a[M], cap[M * M], flow[M * M], deep[M], s, t, n, cnt;
vector<int> to1[M], to2[M];
void push(int vi, int vj, int fl)
{
// cout << vi << " " << vj << " " << fl << "\n";
cnt++, to[cnt] = vj, nxt[cnt] = head[vi], head[vi] = cnt, cap[cnt] = fl, flow[cnt] = 0;
cnt++, to[cnt] = vi, nxt[cnt] = head[vj], head[vj] = cnt, cap[cnt] = 0, flow[cnt] = 0;
}
void init()
{
n = read(), s = n + 1, t = s + 1;
for(int i = 1; i <= n; i++) vector<int>().swap(to1[i]), vector<int>().swap(to2[i]);
for(int i = 1; i <= n; i++) a[i] = read();
for(int i = 1; i < n; i++)
{
int vi = read(), vj = read();
to1[vi].push_back(vj);
to1[vj].push_back(vi);
}
for(int i = 1; i < n; i++)
{
int vi = read(), vj = read();
to2[vi].push_back(vj);
to2[vj].push_back(vi);
}
}
bool bfs(int be, int ed)
{
memset(deep, 0, sizeof(deep));
deep[be] = 1;
queue<int> q;
q.push(be);
while(!q.empty())
{
int now = q.front();
q.pop();
for(int i = head[now]; i; i = nxt[i])
{
int vj = to[i];
if(deep[vj] || flow[i] >= cap[i]) continue;
deep[vj] = deep[now] + 1;
q.push(vj);
if(vj == ed) return true;
}
}
return false;
}
int dfs(int now, int ed, int fl)
{
if(now == ed || fl == 0) return fl;
int tot = 0, f;
for(int i = head[now]; i; i = nxt[i])
{
int vj = to[i];
if(deep[vj] != deep[now] + 1) continue;
if(f = dfs(vj, ed, min(fl, cap[i] - flow[i])))
{
tot += f;
flow[i] += f;
flow[i ^ 1] -= f;
fl -= f;
}
if(fl == 0) break;
}
if(tot == 0) deep[now] = -1;
return tot;
}
void dfs1(int now, int fa)
{
if(fa) push(now, fa, inf);
for(int i = 0; i < to1[now].size(); i++)
{
int vj = to1[now][i];
if(vj == fa) continue;
dfs1(vj, now);
}
}
void dfs2(int now, int fa)
{
if(fa) push(now, fa, inf);
for(int i = 0; i < to2[now].size(); i++)
{
int vj = to2[now][i];
if(vj == fa) continue;
dfs2(vj, now);
}
}
int work(int now)
{
cnt = 1;
memset(head, 0, sizeof(head));
dfs1(now, 0);
dfs2(now, 0);
int ans = 0;
for(int i = 1; i <= n; i++) if(a[i] >= 0) push(s, i, a[i]), ans += a[i];
else push(i, t, -a[i]);
while(bfs(s, t)) ans -= dfs(s, t, inf);
return ans;
}
int main()
{
int T = read();
while(T--)
{
init();
int now = 0;
for(int i = 1; i <= n; i++) now = max(now, work(i));
cout << now << "\n";
}
return 0;
}
以上是关于完美理论(最大权闭合子图)的主要内容,如果未能解决你的问题,请参考以下文章