最小二乘拟合
Posted focus-z
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了最小二乘拟合相关的知识,希望对你有一定的参考价值。
http://www.cnblogs.com/cv-pr/p/4741262.html
https://blog.csdn.net/lotus___/article/details/20546259
二. 最小二乘法
我们以最简单的一元线性模型来解释最小二乘法。什么是一元线性模型呢? 监督学习中,如果预测的变量是离散的,我们称其为分类(如决策树,支持向量机等),如果预测的变量是连续的,我们称其为回归。回归分析中,如果只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。对于二维空间线性是一条直线;对于三维空间线性是一个平面,对于多维空间线性是一个超平面...
对于一元线性回归模型, 假设从总体中获取了n组观察值(X1,Y1),(X2,Y2), …,(Xn,Yn)。对于平面中的这n个点,可以使用无数条曲线来拟合。要求样本回归函数尽可能好地拟合这组值。综合起来看,这条直线处于样本数据的中心位置最合理。 选择最佳拟合曲线的标准可以确定为:使总的拟合误差(即总残差)达到最小。有以下三个标准可以选择:
(1)用“残差和最小”确定直线位置是一个途径。但很快发现计算“残差和”存在相互抵消的问题。
(2)用“残差绝对值和最小”确定直线位置也是一个途径。但绝对值的计算比较麻烦。
(3)最小二乘法的原则是以“残差平方和最小”确定直线位置。用最小二乘法除了计算比较方便外,得到的估计量还具有优良特性。这种方法对异常值非常敏感。
最常用的是普通最小二乘法( Ordinary Least Square,OLS):所选择的回归模型应该使所有观察值的残差平方和达到最小。(Q为残差平方和)- 即采用平方损失函数。
样本回归模型:
其中ei为样本(Xi, Yi)的误差
平方损失函数:
则通过Q最小确定这条直线,即确定,以为变量,把它们看作是Q的函数,就变成了一个求极值的问题,可以通过求导数得到。求Q对两个待估参数的偏导数:
根据数学知识我们知道,函数的极值点为偏导为0的点。
解得:
这就是最小二乘法的解法,就是求得平方损失函数的极值点。
三. C++实现代码
1 /* 2 最小二乘法C++实现 3 参数1为输入文件 4 输入 : x 5 输出: 预测的y 6 */ 7 #include<iostream> 8 #include<fstream> 9 #include<vector> 10 using namespace std; 11 12 class LeastSquare{ 13 double a, b; 14 public: 15 LeastSquare(const vector<double>& x, const vector<double>& y) 16 { 17 double t1=0, t2=0, t3=0, t4=0; 18 for(int i=0; i<x.size(); ++i) 19 { 20 t1 += x[i]*x[i]; 21 t2 += x[i]; 22 t3 += x[i]*y[i]; 23 t4 += y[i]; 24 } 25 a = (t3*x.size() - t2*t4) / (t1*x.size() - t2*t2); // 求得β1 26 b = (t1*t4 - t2*t3) / (t1*x.size() - t2*t2); // 求得β2 27 } 28 29 double getY(const double x) const 30 { 31 return a*x + b; 32 } 33 34 void print() const 35 { 36 cout<<"y = "<<a<<"x + "<<b<<"\\n"; 37 } 38 39 }; 40 41 int main(int argc, char *argv[]) 42 { 43 if(argc != 2) 44 { 45 cout<<"Usage: DataFile.txt"<<endl; 46 return -1; 47 } 48 else 49 { 50 vector<double> x; 51 ifstream in(argv[1]); 52 for(double d; in>>d; ) 53 x.push_back(d); 54 int sz = x.size(); 55 vector<double> y(x.begin()+sz/2, x.end()); 56 x.resize(sz/2); 57 LeastSquare ls(x, y); 58 ls.print(); 59 60 cout<<"Input x:\\n"; 61 double x0; 62 while(cin>>x0) 63 { 64 cout<<"y = "<<ls.getY(x0)<<endl; 65 cout<<"Input x:\\n"; 66 } 67 } 68 }
以上是关于最小二乘拟合的主要内容,如果未能解决你的问题,请参考以下文章