使用PyTorch进行数据处理

Posted gzshan

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了使用PyTorch进行数据处理相关的知识,希望对你有一定的参考价值。

??在深度学习中,数据的处理对于神经网络的训练来说十分重要,良好的数据(包括图像、文本、语音等)处理不仅可以加速模型的训练,同时也直接关系到模型的效果。本文以处理图像数据为例,记录一些使用PyTorch进行图像预处理和数据加载的方法


一、数据的加载

??在PyTorch中,数据加载需要自定义数据集类,并用此类来实例化数据对象,实现自定义的数据集需要继承torch.utils.data包中的Dataset类
??在继承Dataset实现自己的类时,需要实现以下两个Python魔法方法:

  • __getitem__(index): 返回一个样本数据,当使用obj[index]时实际就是在调用obj.__getitem__(index)
  • __len__():返回样本的数量,当使用len(obj)时实际就是在调用obj.__len__()

??例如,以猫狗大战的二分类数据集为例,其加载过程如下:
技术图片

import os
import torch as t
from torch.utils import data
from PIL import Image
import numpy as np

class dogCat(data.Dataset):
    def __init__(self,root): # root为数据存放目录
        imgs = os.listdir(root) #列出当前路径下所有的文件
        self.imgs = [os.path.join(root,img) for img in imgs] # 所有图片的路径
        #print(self.imgs)

    """返回一个样本数据"""
    def __getitem__(self, item): 
        img_path = self.imgs[item] # 第item张图片的路径
        #dog 1 cat 0
        label = 1 if 'dog' in img_path.split('\\\\')[-1] else 0 # 获取标签信息
        #print(label)
        pil_img = Image.open(img_path) #读入图片
        print(type(pil_img))
        array = np.asarray(pil_img) # 转为numpy.array类型
        data = t.from_numpy(array) # 转为tensor类型
        return data,label #返回图片对应的tensor及其标签

    """样本的数量"""
    def __len__(self):
        return len(self.imgs)

if __name__ == '__main__':
    dogcat = dogCat('D:\\pycode\\dogsVScats\\data\\catvsdog\\\\train') #数据集对象
    data,label = dogcat[0] # 返回第0张图片的信息
    print(data.size())
    print(label)
    print(len(dogcat))

二、计算机视觉工具包:torchvision

??对于图像数据来说,以上的数据加载时不完善的,因为只是将图片读入,而没有进行相关的处理,如每张图片的大小和形状,样本的数值归一化等等。
??为了解决这一问题,PyTorch开发了一个视觉工具包torchvision,这个包独立于torch,需要通过pip install torchvision来单独安装。
??torchvision有三个部分组成:

  • models提供各种经典的网络结构和预训练好的模型,如AlexNet、VGG、ResNet、Inception等
from torchvision import models
from torch import nn
resnet34 = models.resnet34(pretrained=True,num_classes=1000) # 加载预训练模型
resnet34.fc=nn.Linear(512,10) # 修改全连接层为10分类
  • datasets提供了常用的数据集,如MNIST、CIFAR10/100、ImageNet、COCO等
from torchvision import datasets
dataset = datasets.MNIST('data/',download=True,train=False,transform=transform)

??除了常用数据集外,需要特别注意的是ImageFolder,ImageFolder假设所有的文件按文件夹存放,每个文件夹下面存储同一类的图片,文件夹的名字为这一类别的名字。这是我们经常用到的一种数据组织形式。

# 使用方法:
ImageFolder(root,transform=None,target_transform=None,loader=default_loader)
# 参数:文件夹路径,对图像做什么样的转换,对标签做什么样的转换,如何加载图片

from torchvision.datasets import ImageFolder
dataset = ImageFolder('data\\\\')
print(dataset.class_to_idx) # class_to_idx ,label和id的对应关系,从0开始
print(dataset.imgs) # 数据和标签对应
  • transforms: 提供常用的数据预处理操作,主要是对Tensor和PIL Image对象的处理操作

??对PIL Image的操作:Resize、CenterCrop、RandomCrop、RandomsizedCrop、Pad、ToTensor等。

??对Tensor的操作:Normalize、ToPILImage等。

??如果要进行多个操作,可以通过transforms.Compose([])将操作拼接起来。但是需要注意的是需要首先构建转换操作,然后再执行转换操作。

import os
from torch.utils import data
from PIL import Image
import numpy as np
from torchvision import transforms as T

transform = T.Compose([T.Resize(224),T.CenterCrop(224),T.ToTensor(),T.Normalize(mean=[.5,.5,.5],std=[.5,.5,.5])])  # 构建转换操作

class dogCat(data.Dataset):
    def __init__(self,root,transforms):
        imgs = os.listdir(root)
        #print(imgs)
        self.imgs = [os.path.join(root,img) for img in imgs]
        #print(self.imgs)
        self.transforms = transforms

    def __getitem__(self, item):
        img_path = self.imgs[item]
        #dog 1 cat 0
        label = 1 if 'dog' in img_path.split('\\\\')[-1] else 0
        #print(label)
        pil_img = Image.open(img_path)
        if self.transforms:
            pil_img = self.transforms(pil_img)  #执行准换操作
        return pil_img,label,item

    def __len__(self):
        return len(self.imgs)

三、使用DataLoader进行数据再处理

??通过上述描述,我们通过自定义数据集类,使用视觉工具包进行图像的转换等操作,最终得到的是一个dataset的数据集对象,使用此对象可以一次返回一个样本。
??但是,我们应该清楚:训练神经网络时,一般采用的是小批量的梯度下降,因此我们是对一批数据进行处理,也就是一个batch,同时,数据还需要进行打乱(shuffle)和并行加速等。PyTorch提供了DataLoader来实现这些功能。
??DataLoader定义如下:

DataLoader(dataset,batch_size=1,shuffle=False,sampler=None,num_workers=0,collate_fn=default_collate,pin_memory=False,drop_last=False)

??参数含义如下:

  • dataset:加载的数据集
  • batch_zize: 批大小
  • shuffle: 是否将数据打乱
  • sampler:样本抽样,常用的有随机采样RandomSampler,shuffle=True时自动调用随机采样,默认是顺序采样,还有一个常用的是:WeightedRandomSampler,按照样本的权重进行采样。
  • num_workers: 使用的进程数,0代表不使用多进程。
  • collate_fn: 拼接方式。
  • pin_memory: 是否将数据保存在pin memory区。
  • drop_last: 是否将多出来的不足一个batch的丢弃。

??调用DataLoader得到的结果是一个可迭代的对象,可以和使用迭代器一样使用它。

from torchvision import transforms as T
from torch.utils.data import DataLoader

transform = T.Compose([T.Resize(224),T.CenterCrop(224),T.ToTensor(),T.Normalize(mean=[.5,.5,.5],std=[.5,.5,.5])])

if __name__ == '__main__':
    dogcat = dogCat('D:\\pycode\\dogsVScats\\data\\catvsdog\\\\train', transform)
    data, label, index = dogcat[0]
    
    dataloader = DataLoader(dogcat,batch_size=3,shuffle=False,num_workers=0,drop_last=False)
    for batchDatas,batchLabels in dataloader: 
        train()

总结

??本文记录了使用PyTorch进行数据预处理的相关操作流程,重点是掌握Dataset和DataLoader两个类的使用,另外,视觉工具包torchvision的三个模块灵活运用,会对数据处理过程有很好的帮助。

以上是关于使用PyTorch进行数据处理的主要内容,如果未能解决你的问题,请参考以下文章

使用Pytorch框架自己制作做数据集进行图像分类

使用 pytorch 进行 BERT 文本分类

如何使用 PyTorch DataLoader 进行强化学习?

Pytorch框架下CNN介绍及代码实现

基于pytorch使用实现CNN 如何使用pytorch构建CNN卷积神经网络

Pytorch文本分类(imdb数据集),含DataLoader数据加载,最优模型保存