支持向量机(SVM)之数学公式详细推导

Posted luv-gem

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了支持向量机(SVM)之数学公式详细推导相关的知识,希望对你有一定的参考价值。

一、【概述】

1、含义:

支持向量机(support vector machine,SVM)是一种二类分类器,它的基本模型是定义在特征空间上的间隔最大化的线性分类器,通过引入核函数,也可以作为非线性分类器来解决非线性数据集的分类问题。

2、求解:

支持向量机的学习策略是间隔最大化,可转化为一个求解凸二次规划的问题。

3、模型:

支持向量机模型从简单到复杂可分为:线性可分支持向量机、线性支持向量机和非线性支持向量机。

线性可分支持向量机:训练数据线性可分,通过硬间隔最大化,学习一个线性分类器;

线性支持向量机:训练数据近似线性可分,通过软间隔最大化,学习一个线性分类器;

非线性支持向量机:训练数据线性不可分,通过使用核技巧(kernel trick)及软间隔最大化,学习一个非线性分类器。

本次数学推导就是推导以上三个模型,不涉及SMO算法的推导。考虑到公式比较多,所以是用手写笔记的形式进行整理。

二、【数学推导】

技术图片

以上是关于支持向量机(SVM)之数学公式详细推导的主要内容,如果未能解决你的问题,请参考以下文章

SVM探索支持向量机

支持向量机SVM原理解读,以及PyQt5融合SVM的代码实现,没有公式推导(已经很成熟,很难改公式,数学专业的可以推导学习)

支持向量机----分类中的“王者”

机器学习100天(四十一):041 对偶支持向量机-公式推导

Spark机器学习系列之13: 支持向量机SVM

入门支持向量机1:图文详解SVM原理与模型数学推导