GSS1 ~ 8解题报告 完整版

Posted yizimi

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了GSS1 ~ 8解题报告 完整版相关的知识,希望对你有一定的参考价值。

GSS1 —— GSS8 简述做法加代码。

GSS1

给出了序列\(A[1]\)\(A[2]\),…,\(A[N]\)\((a[i]≤15007,1≤N≤50000)\)。查询定义如下: 查询\((x,y)=max\{a[i]+a[i+1]+...+a[j];x≤i≤j≤y\}\)。 给定M个查询,程序必须输出这些查询的结果。

思路:

我们维护四个值:

sum, lsum, rsum, msum

然后进行更新,静态查询即可。

具体讲解见 这里了啦

code:

#include <algorithm>
#include <cmath>
#include <cstdio>
#include <iostream>
using namespace std;
#define go(i, j, n, k) for (int i = j; i <= n; i += k)
#define fo(i, j, n, k) for (int i = j; i >= n; i -= k)
#define mn 50010
#define inf 1 << 30
#define ll long long
#define root 1, n, 1
#define lson l, m, rt << 1
#define rson m + 1, r, rt << 1 | 1
#define bson l, r, rt
inline int read(){
    int f = 1, x = 0;char ch = getchar();
    while (ch > '9' || ch < '0'){if (ch == '-')f = -f;ch = getchar();}
    while (ch >= '0' && ch <= '9'){x = x * 10 + ch - '0';ch = getchar();}
    return x * f;
}
inline void write(int x){
    if (x < 0)putchar('-'),x = -x;
    if (x > 9)write(x / 10);
    putchar(x % 10 + '0');
}
//This is AC head above...
struct tree{
    int lsum, rsum, sum, msum;
} z[mn << 2];
inline void update(int rt){
    z[rt].sum = z[rt << 1].sum + z[rt << 1 | 1].sum;
    z[rt].lsum = max(z[rt << 1].lsum, z[rt << 1].sum + z[rt << 1 | 1].lsum);
    z[rt].rsum = max(z[rt << 1 | 1].rsum, z[rt << 1 | 1].sum + z[rt << 1].rsum);
    z[rt].msum = max(max(z[rt << 1].msum, z[rt << 1 | 1].msum), z[rt << 1].rsum + z[rt << 1 | 1].lsum);
}
inline void build(int l,int r,int rt){
    if(l==r){
        z[rt].sum = z[rt].lsum = z[rt].rsum = z[rt].msum = read();
        return;
    }
    int m = (l + r) >> 1;
    build(lson);
    build(rson);
    update(rt);
}
inline tree query(int l,int r,int rt,int nowl,int nowr){
    if(nowl<=l && r<=nowr){return z[rt];}
    int m = (l + r) >> 1;
    bool fl = false, fr = false;
    tree tl, tr, res;
    if (nowl <= m){
        if(m<nowr){
            tl = query(lson, nowl, nowr);
            tr = query(rson, nowl, nowr);
            res.sum = tl.sum + tr.sum;
            res.lsum = max(tl.lsum, tl.sum + tr.lsum);
            res.rsum = max(tr.rsum, tr.sum + tl.rsum);
            res.msum = max(max(tl.msum, tr.msum), tl.rsum + tr.lsum);
            return res;
        }else{
            return query(lson, nowl, nowr);
        }
    }else{
        return query(rson, nowl, nowr);
    }
}
int n, m;
int main(){
    n = read();
    build(root);
    m = read();
    go(i, 1, m, 1) {
        int x = read(), y = read();
        cout << query(root, x, y).msum << "\n";
    }
    return 0;
}

GSS2

给出 \(n\) 个数,\(q\) 次询问,求最大子段和,相同的数只算一次。

思路:

因为没有修改,我们考虑离线做。

我们把询问 \([l, r]\) 按照 \(r\) 的升序排序,在线段树内维护 \(sum\) 和 它的历史最大值 \(hmax\),我们可以记 \(pre[i]\) 作为第 \(i\) 个元素的上一个元素的位置。

我们把原数组按读入顺序加入,我们只需要把这个 \(a[i]\) 在区间 \([pre[i] + 1, i]\) 上区间加即可,然后查询时直接查询 \([l, r]\) 的历史最大值。

记得加上维护左右儿子的 \(sum\) 最大值和左右儿子 \(hmax\) 的最大值,这样我们才能更新 本节点的 \(hmax\)

code:

#include <algorithm>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
#define go(i, j, n, k) for (int i = j; i <= n; i += k)
#define fo(i, j, n, k) for (int i = j; i >= n; i -= k)
#define mn 100010
#define inf 1 << 30
#define ll long long
#define root 1, n, 1
#define lson l, m, rt << 1
#define rson m + 1, r, rt << 1 | 1
#define bson l, r, rt
inline int read(){
    int f = 1, x = 0;char ch = getchar();
    while (ch > '9' || ch < '0'){if (ch == '-')f = -f;ch = getchar();}
    while (ch >= '0' && ch <= '9'){x = x * 10 + ch - '0';ch = getchar();}
    return x * f;
}
inline void write(int x){
    if (x < 0)putchar('-'),x = -x;
    if (x > 9)write(x / 10);
    putchar(x % 10 + '0');
}
//This is AC head above...
struct Que{
    ll l, r, id;
} q[mn];
ll b[mn], ans[mn];
ll pre[mn << 1], suf[mn << 1];
inline bool cmp(Que a,Que b){
    return a.r < b.r;
}
struct tree{
    ll sum, hsum, cols, hcol;
};
struct SegmentTree{
    tree z[mn << 2];
    inline tree operation(tree a,tree b){
        return (tree){max(a.sum, b.sum), max(a.hsum, b.hsum)};
    }
    inline void update(int rt){
        z[rt].sum = max(z[rt << 1].sum, z[rt << 1 | 1].sum);
        z[rt].hsum = max(z[rt << 1].hsum, z[rt << 1 | 1].hsum);
    }
    inline void color(int l, int r, int rt){
        z[rt].hsum = max(z[rt].hsum, z[rt >> 1].hcol + z[rt].sum);
        z[rt].sum += z[rt >> 1].cols;
        z[rt].hcol = max(z[rt].hcol, z[rt >> 1].hcol + z[rt].cols);
        z[rt].cols += z[rt >> 1].cols;
    }
    inline void coloring(int l,int r,int rt,ll v){
        z[rt].sum += v;
        z[rt].hsum = max(z[rt].sum, z[rt].hsum);
        z[rt].cols += v;
        z[rt].hcol = max(z[rt].cols, z[rt].hcol);
    }
    inline void push_col(int l,int r,int rt){
        int m = (l + r) >> 1;
        color(lson);
        color(rson);
        z[rt].hcol = z[rt].cols = 0;
    }
    inline void modify(int l,int r,int rt,int nowl,int nowr,ll v){
        if(nowl<=l && r<=nowr){
            coloring(bson,v);
            return;
        }
        int m = (l + r) >> 1;
        push_col(bson);
        if (nowl <= m)
            modify(lson, nowl, nowr, v);
        if(m<nowr)
            modify(rson, nowl, nowr, v);
        update(rt);
    }
    inline tree query(int l,int r,int rt,int nowl,int nowr){
        if(nowl<=l && r<=nowr)
            return z[rt];
        int m = (l + r) >> 1;
        push_col(bson);
        if(nowl<=m){
            if(m<nowr)
                return operation(query(lson, nowl, nowr), query(rson, nowl, nowr));
            else
                return query(lson, nowl, nowr);
        }else{
            return query(rson, nowl, nowr);
        }
    }
} tr;
int n, m;
int main(){
    n = read();
    go(i, 1, n, 1) b[i] = read(), pre[i] = suf[b[i] + 100000], suf[b[i] + 100000] = i;
    m = read();
    go(i, 1, m, 1) q[i].l = read(), q[i].r = read(), q[i].id = i;
    sort(q + 1, q + m + 1, cmp);
    int y = 1;
    go(i, 1, n, 1){
        tr.modify(root, pre[i] + 1, i, b[i]);
        while(y<=m&&q[y].r<=i){
            ans[q[y].id] = tr.query(root, q[y].l, q[y].r).hsum;
            y++;
        }
    }
    go(i, 1, m, 1)
        printf("%lld\n", ans[i]);
    return 0;
}

GSS3

\(n\) 个数,\(q\) 次操作

  • 0 \(x\) \(y\)\(A_x\) 修改为 \(y\)

  • 1 \(l\) \(r\) 询问区间 \([l, r]\) 的最大子段和

思路

直接在GSS1代码里加上单点加就好,没什么其他注意的。

code:

#include <algorithm>
#include <cmath>
#include <cstdio>
#include <iostream>
using namespace std;
#define go(i, j, n, k) for (int i = j; i <= n; i += k)
#define fo(i, j, n, k) for (int i = j; i >= n; i -= k)
#define mn 100010
#define inf 1 << 30
#define ll long long
#define root 1, n, 1
#define lson l, m, rt << 1
#define rson m + 1, r, rt << 1 | 1
#define bson l, r, rt
inline int read(){
    int f = 1, x = 0;char ch = getchar();
    while (ch > '9' || ch < '0'){if (ch == '-')f = -f;ch = getchar();}
    while (ch >= '0' && ch <= '9'){x = x * 10 + ch - '0';ch = getchar();}
    return x * f;
}
inline void write(int x){
    if (x < 0)putchar('-'),x = -x;
    if (x > 9)write(x / 10);
    putchar(x % 10 + '0');
}
//This is AC head above...
struct tree{
    int sum, lsum, rsum, msum;
} z[mn << 2];
inline void update(int rt){
    z[rt].sum = z[rt << 1].sum + z[rt << 1 | 1].sum;
    z[rt].lsum = max(z[rt << 1].lsum, z[rt << 1 | 1].lsum + z[rt << 1].sum);
    z[rt].rsum = max(z[rt << 1 | 1].rsum, z[rt << 1].rsum + z[rt << 1 | 1].sum);
    z[rt].msum = max(max(z[rt << 1].msum, z[rt << 1 | 1].msum), z[rt << 1].rsum + z[rt << 1 | 1].lsum);
}
inline void build(int l,int r,int rt){
    if(l==r){
        z[rt].sum = z[rt].lsum = z[rt].rsum = z[rt].msum = read();
        return;
    }
    int m = (l + r) >> 1;
    build(lson);
    build(rson);
    update(rt);
}
inline void modify(int l,int r,int rt,int now,int v){
    if(l==r && l==now){
        z[rt].sum = z[rt].rsum = z[rt].msum = z[rt].lsum = v;
        return;
    }
    int m = (l + r) >> 1;
    //push_col(bson);
    if(now<=m)
        modify(lson, now, v);
    else
        modify(rson, now, v);
    update(rt);
}
inline tree query(int l,int r,int rt,int nowl,int nowr){
    if(nowl<=l && r<=nowr){
        //cout << z[rt].msum << " ";
        return z[rt];
    }
    int m = (l + r) >> 1;
    //push_col(bson);
    tree tl, tr, res;
    if(nowl<=m){
        if(m<nowr){
            tl = query(lson, nowl, nowr);
            tr = query(rson, nowl, nowr);
            res.sum = tl.sum + tr.sum;
            res.lsum = max(tl.lsum, tl.sum + tr.lsum);
            res.rsum = max(tr.rsum, tr.sum + tl.rsum);
            res.msum = max(max(tl.msum, tr.msum), tl.rsum + tr.lsum);
            return res;
        }else
            return query(lson, nowl, nowr);
        
    }else{
        return query(rson, nowl, nowr);
    }
}
int n, m;
int main(){
    n = read();
    build(root);
    m = read();
    go(i,1,m,1){
        int s = read();
        if(!s){
            int x = read(), y = read();
            modify(root, x, y);
        }else{
            int x = read(), y = read();
            cout << query(root, x, y).msum << "\n";
        }
    }
    return 0;
}

GSS4

「题意」: \(n\) 个数,和在 \(10 ^ {18}\)

现在有「两种」操作

  • 0 \(x\) \(y\) 把区间 \([x,y]\) 内的每个数开方,下取整

  • 1 \(x\) \(y\) 询问区间 \([x,y]\) 的每个数的和

「格式」: 有多组数据,数据以EOF结束,对于每组数据,输出数据的序号,每组数据之后输出一个空行。

「注意」: 不保证给出的区间 \([x, y]\)\(x <= y\) ,如果 \(x > y\) 请交换\(x\)\(y\)

思路

如果数据都在 10 ^ 18 那说明我们如果此次开方的话,肯定在很快的几次开方后变成了 1 ,所以,如果这个区间的数字开方开着开着都变成了 1, 那么就没必要在去开方了。经计算,每个数最多开 7 ~ 8 次(保守说的),所以我们直接暴力在线段树上修改最多会修改 8 * N * logN。

code:

#include <algorithm>
#include <cmath>
#include <cstdio>
#include <iostream>
using namespace std;
#define go(i, j, n, k) for (int i = j; i <= n; i += k)
#define fo(i, j, n, k) for (int i = j; i >= n; i -= k)
#define mn 100010
#define inf 1 << 30
#define ll long long
#define root 1, n, 1
#define lson l, m, rt << 1
#define rson m + 1, r, rt << 1 | 1
#define bson l, r, rt
inline ll read(){
    ll f = 1, x = 0;char ch = getchar();
    while (ch > '9' || ch < '0'){if (ch == '-')f = -f;ch = getchar();}
    while (ch >= '0' && ch <= '9'){x = x * 10 + ch - '0';ch = getchar();}
    return x * f;
}
inline void write(int x){
    if (x < 0)putchar('-'),x = -x;
    if (x > 9)write(x / 10);
    putchar(x % 10 + '0');
}
//This is AC head above...
ll z[mn << 2];
inline void update(int rt){
    z[rt] = z[rt << 1] + z[rt << 1 | 1];
}
inline void build(int l,int r,int rt){
    if(l==r){
        z[rt] = read();
        return;
    }
    int m = (l + r) >> 1;
    build(lson);
    build(rson);
    update(rt);
}
inline void modify(int l,int r,int rt,int nowl,int nowr){
    if(r-l+1 == z[rt])
        return;
    if(l==r){
        z[rt] = sqrt(z[rt]);
        return;
    }
    int m = (l + r) >> 1;
    if(nowl<=m)
        modify(lson, nowl, nowr);
    if(m<nowr)
        modify(rson, nowl, nowr);
    update(rt);
}
inline ll query(int l,int r,int rt,int nowl,int nowr){
    if(nowl<=l && r<=nowr){
        return z[rt];
    }
    int m = (l + r) >> 1;
    if(nowl<=m){
        if(m<nowr)
            return query(lson, nowl, nowr) + query(rson, nowl, nowr);
        else
            return query(lson, nowl, nowr);
    }else{
        return query(rson, nowl, nowr);
    }
}
int n, m, tot;
int main(){
    while (scanf("%d", &n) != EOF){
        printf("Case #%d:\n", ++tot);
        build(root);
        m = read();
        go(i, 1, m, 1){
            int s = read(), x = read(), y = read();
            if(x>y)
                swap(x, y);
            if(!s){
                modify(root, x, y);
            }else{
                printf("%lld\n", query(root, x, y));
            }
        }
        putchar('\n');
    }
    return 0;
}

GSS5

给定一个序列。查询左端点在\([x_1, y_1]\)之间,且右端点在\([x_2, y_2]\)之间的最大子段和,数据保证\(x_1 <= x_2\), \(y_1 <= y_2\),但是不保证端点所在的区间不重合

思路

我们考虑分类讨论。

首先是\(y_1 <= x_2\)的情况,这种情况说明,\([y_1, x_2]\)必定在答案的和之中,我们要求的就是\([x_1, y_1]\)的最大后缀和,加上\([x_2, y_2]\)的最大前缀和,加上\([y_1, x_2]\)的区间和。

然后就是一个比较麻烦的情况,\(y_1 > x_2\)

这种情况可能有三种最佳答案。一种是以 \(y_1\) 为分界的最大后缀和(区间\([x_1, y_1]\))与最大前缀和(\([y_1, y_2]\)),一种是以 \(x_2\) 为分界的最大后缀和(\([x_1, x_2]\))与最大前缀和(\([x_2, y_2]\)),第三种就是所取答案都在 \([x_2, y_1]\) 中。

code:

#include <algorithm>
#include <cmath>
#include <cstdio>
#include <iostream>
using namespace std;
#define go(i, j, n, k) for (int i = j; i <= n; i += k)
#define fo(i, j, n, k) for (int i = j; i >= n; i -= k)
#define mn 50010
#define inf 1 << 30
#define ll long long
#define root 1, n, 1
#define lson l, m, rt << 1
#define rson m + 1, r, rt << 1 | 1
#define bson l, r, rt
inline int read(){
    int f = 1, x = 0;char ch = getchar();
    while (ch > '9' || ch < '0'){if (ch == '-')f = -f;ch = getchar();}
    while (ch >= '0' && ch <= '9'){x = x * 10 + ch - '0';ch = getchar();}
    return x * f;
}
inline void write(int x){
    if (x < 0)putchar('-'),x = -x;
    if (x > 9)write(x / 10);
    putchar(x % 10 + '0');
}
//This is AC head above...
struct tree{
    int lsum, rsum, sum, msum;
} z[mn << 2];
int a[mn];
inline void update(int rt){
    z[rt].sum = z[rt << 1].sum + z[rt << 1 | 1].sum;
    z[rt].lsum = max(z[rt << 1].lsum, z[rt << 1].sum + z[rt << 1 | 1].lsum);
    z[rt].rsum = max(z[rt << 1 | 1].rsum, z[rt << 1 | 1].sum + z[rt << 1].rsum);
    z[rt].msum = max(max(z[rt << 1].msum, z[rt << 1 | 1].msum), z[rt << 1].rsum + z[rt << 1 | 1].lsum);
}
inline void build(int l,int r,int rt){
    if(l==r){
        z[rt].sum = z[rt].lsum = z[rt].rsum = z[rt].msum = a[l];
        return;
    }
    int m = (l + r) >> 1;
    build(lson);
    build(rson);
    update(rt);
}
inline tree query(int l,int r,int rt,int nowl,int nowr){
    if(nowl<=l && r<=nowr){return z[rt];}
    int m = (l + r) >> 1;
    bool fl = false, fr = false;
    tree tl, tr, res;
    if (nowl <= m){
        if(m<nowr){
            tl = query(lson, nowl, nowr);
            tr = query(rson, nowl, nowr);
            res.sum = tl.sum + tr.sum;
            res.lsum = max(tl.lsum, tl.sum + tr.lsum);
            res.rsum = max(tr.rsum, tr.sum + tl.rsum);
            res.msum = max(max(tl.msum, tr.msum), tl.rsum + tr.lsum);
            return res;
        }else{
            return query(lson, nowl, nowr);
        }
    }else{
        return query(rson, nowl, nowr);
    }
}
int n, m;
inline void solve() {
    n = read();
    go(i, 1, n, 1) a[i] = read();
    build(root);
    m = read();
    go(i, 1, m, 1) {
        int x = read(), y = read(), xx = read(), yy = read();
        if(y < xx) {
            int ans = 0;
            ans += query(root, x, y).rsum;
            if(y + 1 <= xx - 1) 
                ans += query(root, y + 1, xx - 1).sum;
            ans += query(root, xx, yy).lsum;
            printf("%d\n", ans);
        } else {
            int ans = 0;
            ans = query(root, xx, y).msum;
            if(x < xx) ans = max(ans, query(root, x, xx).rsum + query(root, xx, yy).lsum - a[xx]);
            if(y < yy) ans = max(ans, query(root, x, y).rsum + query(root, y, yy).lsum - a[y]);
            printf("%d\n", ans);
        }
    }
}
inline void init() {
    memset(z, 0, sizeof z);
}
int main(){
    int T = read();
    while(T--) {
        init();
        solve();
    }
    return 0;
}

GSS6

给出一个由 \(N\) 个整数组成的序列 \(A\),你需要应用 \(M\) 个操作:

  • \(I\) \(p\) \(x\)\(p\) 处插入插入一个元素 \(x\)
  • \(D\) \(p\) 删除 \(p\) 处的一个元素
  • \(R\) \(p\) \(x\) 修改 \(p\) 处元素的值为 \(x\)
  • \(Q\) \(l\) \(r\) 查询一个区间 \([l, r]\) 的最大子段和

思路

平衡树呗,记得push up一下刚更新的节点就好啦。

此处给出两个版本:

  • Splay版

  • FHQ Treap版

请自行选择食用QwQ

code1: (Splay)

#include <algorithm>
#include <cmath>
#include <cstdio>
#include <iostream>
using namespace std;
#define go(i, j, n, k) for (int i = j; i <= n; i += k)
#define fo(i, j, n, k) for (int i = j; i >= n; i -= k)
#define mn 200010
#define inf 2147483647
#define ll long long
#define root 1, n, 1
#define lson l, m, rt << 1
#define rson m + 1, r, rt << 1 | 1
#define bson l, r, rt
inline int read(){
    int f = 1, x = 0;char ch = getchar();
    while (ch > '9' || ch < '0') {if (ch == '-') f = -f; ch = getchar(); }
    while (ch >= '0' && ch <= '9') { x = x * 10 + ch - '0'; ch = getchar(); }
    return x * f;
}
inline void write(int x){
    if (x < 0) putchar('-'), x = -x;
    if (x > 9) write(x / 10);
    putchar(x % 10 + '0');
}
//This is AC head above...
vector<int> ljt;
struct tree{
    int ch[2], sze, fa;
    ll w, sum, lsum, rsum, msum;
    tree(int s, int f, int v, int su, int l, int r, int m)
        : sze(s), fa(f), w(v), sum(su), lsum(l), rsum(r), msum(m) { ch[0] = ch[1] = 0; }
    tree() : tree(0, 0, 0, 0, 0, 0, 0) {}
};
int n, m, tot, a[mn];
tree z[mn];
inline int newnode(int v = 0){
    int rt;
    if (ljt.empty())
        rt = ++tot;
    else
        rt = ljt.back(), ljt.pop_back();
    z[rt].fa = z[rt].ch[0] = z[rt].ch[1] = 0;
    z[rt].sze = 1;
    z[rt].w = z[rt].sum = v;
    z[rt].lsum = z[rt].rsum = z[rt].msum = max(v, 0);
    return rt;
}
inline void deletenode(int rt){
    z[rt].fa = z[rt].ch[0] = z[rt].ch[1] = z[rt].w = z[rt].sum = z[rt].msum = z[rt].lsum = z[rt].rsum = 0;
    z[rt].sze = 1;
    ljt.push_back(rt);
}
inline void update(int rt)
{
    z[rt].sum = z[rt].w, z[rt].sze = 1;
    if (z[rt].ch[0])
        z[rt].sum += z[z[rt].ch[0]].sum, z[rt].sze += z[z[rt].ch[0]].sze;
    if (z[rt].ch[1])
        z[rt].sum += z[z[rt].ch[1]].sum, z[rt].sze += z[z[rt].ch[1]].sze;
    if (z[rt].ch[0] && z[rt].ch[1]) {
        z[rt].lsum = max(z[z[rt].ch[0]].lsum, z[z[rt].ch[0]].sum + z[rt].w + z[z[rt].ch[1]].lsum);
        z[rt].rsum = max(z[z[rt].ch[1]].rsum, z[z[rt].ch[1]].sum + z[rt].w + z[z[rt].ch[0]].rsum);
        z[rt].msum = max({z[z[rt].ch[0]].msum, z[z[rt].ch[1]].msum, z[z[rt].ch[0]].rsum + z[z[rt].ch[1]].lsum + z[rt].w});
    } else if (z[rt].ch[0]) {
        z[rt].lsum = max({z[z[rt].ch[0]].lsum, z[z[rt].ch[0]].sum + z[rt].w, 0ll});
        z[rt].rsum = max(z[z[rt].ch[0]].rsum + z[rt].w, 0ll);
        z[rt].msum = max(z[z[rt].ch[0]].msum, z[z[rt].ch[0]].rsum + z[rt].w);
    } else if (z[rt].ch[1]) {
        z[rt].lsum = max(z[z[rt].ch[1]].lsum + z[rt].w, 0ll);
        z[rt].rsum = max({z[z[rt].ch[1]].rsum, z[z[rt].ch[1]].sum + z[rt].w, 0ll});
        z[rt].msum = max(z[z[rt].ch[1]].msum, z[z[rt].ch[1]].lsum + z[rt].w);
    } else {
        z[rt].lsum = z[rt].rsum = max(z[rt].w, 0ll);
        z[rt].msum = z[rt].w;
    }
}
inline int iden(int rt) {
    return z[z[rt].fa].ch[0] == rt ? 0 : 1;
}
inline void connect(int x, int y, int son) {
    z[x].fa = y;
    z[y].ch[son] = x;
}
inline void rotate(int x) {
    int y = z[x].fa;
    int moot = z[y].fa;
    int yson = iden(x);
    int mootson = iden(y);
    int B = z[x].ch[yson ^ 1];
    connect(B, y, yson), connect(y, x, yson ^ 1), connect(x, moot, mootson);
    update(y), update(x);
}
inline void splay(int x, int &k) {
    if (x == k)
        return;
    int p = z[k].fa;
    while (z[x].fa != p) {
        int y = z[x].fa;
        if (z[y].fa != p)
            rotate(iden(y) ^ iden(x) ? x : y);
        rotate(x);
    }
    k = x;
}
inline int findkth(int rt, int k) {
    while (1119) {
        if (z[rt].ch[0] && k <= z[z[rt].ch[0]].sze)
            rt = z[rt].ch[0];
        else {
            if (z[rt].ch[0])
                k -= z[z[rt].ch[0]].sze;
            if (!--k)
                return rt;
            rt = z[rt].ch[1];
        }
    }
}
inline void insert(int &rt, int p, int v) {
    int x = findkth(rt, p);
    splay(x, rt);
    int y = findkth(rt, p + 1);
    int ooo = z[rt].ch[1];
    splay(y, ooo);
    z[y].ch[0] = newnode(v);
    z[z[y].ch[0]].fa = y;
    update(z[y].ch[0]), update(y), update(x);
}
inline void erase(int &rt, int p) {
    int y = findkth(rt, p);
    splay(y, rt);
    int x = findkth(rt, p + 1);
    int ooo = z[rt].ch[1];
    splay(x, ooo);
    int oo = z[x].ch[1];
    z[oo].fa = y;
    z[y].ch[1] = oo;
    deletenode(x);
    update(y);
}
inline int getRange(int &rt, int l, int r) {
    int x = findkth(rt, l);
    splay(x, rt);
    int y = findkth(rt, r + 2);
    int ooo = z[rt].ch[1];
    splay(y, ooo);
    return z[y].ch[0];
}
inline void modify(int &rt, int p, ll v) {
    int x = findkth(rt, p + 1);
    splay(x, rt);
    z[x].w = v;
    update(x);
}
inline ll query(int &rt, int l, int r) {
    int x = getRange(rt, l, r);
    return z[x].msum;
}
inline void build(int rt, int l, int r) {
    int m = (l + r) >> 1;
    z[rt].w = a[m];
    if (l <= m - 1) {
        z[rt].ch[0] = newnode();
        z[z[rt].ch[0]].fa = rt;
        build(z[rt].ch[0], l, m - 1);
    }
    if (m + 1 <= r) {
        z[rt].ch[1] = newnode();
        z[z[rt].ch[1]].fa = rt;
        build(z[rt].ch[1], m + 1, r);
    }
    update(rt);
}
int main()
{
    n = read();
    go(i, 1, n, 1) a[i] = read();
    int rot = ++tot;
    build(rot, 0, n + 1);
    m = read();
    go(i, 1, m, 1)
    {
        char s;
        cin >> s;
        if (s == 'I') {
            int p = read(), v = read();
            insert(rot, p, v);
        } else if (s == 'D') {
            int p = read();
            erase(rot, p);
        } else if (s == 'R') {
            int p = read(), x = read();
            modify(rot, p, x);
        } else {
            int x = read(), y = read();
            printf("%lld\n", query(rot, x, y));
        }
    }
    return 0;
}

code2: (FHQ Treap)

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <ctime>
using namespace std;
#define go(i, j, n, k) for(int i = j; i <= n; i += k)
#define fo(i, j, n, k) for(int i = j; i >= n; i -= k)
#define mn 400010
#define inf 1 << 30
#define ll long long
inline int read() {
    int x = 0, f = 1; char ch = getchar();
    while(ch > '9' || ch < '0') { if(ch == '-') f = -f; ch = getchar(); }
    while(ch >= '0' && ch <= '9') { x = x * 10 + ch - '0'; ch = getchar(); }
    return x * f;
}
struct tree{
    int pri, ch[2], sze;
    ll x, sum, lsum, rsum, msum;
} z[mn];
inline void update(int rt)
{
    z[rt].sum = z[rt].x, z[rt].sze = 1;
    if (z[rt].ch[0])
        z[rt].sum += z[z[rt].ch[0]].sum, z[rt].sze += z[z[rt].ch[0]].sze;
    if (z[rt].ch[1])
        z[rt].sum += z[z[rt].ch[1]].sum, z[rt].sze += z[z[rt].ch[1]].sze;
    if (z[rt].ch[0] && z[rt].ch[1]) {
        z[rt].lsum = max(z[z[rt].ch[0]].lsum, z[z[rt].ch[0]].sum + z[rt].x + z[z[rt].ch[1]].lsum);
        z[rt].rsum = max(z[z[rt].ch[1]].rsum, z[z[rt].ch[1]].sum + z[rt].x + z[z[rt].ch[0]].rsum);
        z[rt].msum = max(max(z[z[rt].ch[0]].msum, z[z[rt].ch[1]].msum), z[z[rt].ch[0]].rsum + z[z[rt].ch[1]].lsum + z[rt].x);
    } else if (z[rt].ch[0]) {
        z[rt].lsum = max(max(z[z[rt].ch[0]].lsum, z[z[rt].ch[0]].sum + z[rt].x), 0ll);
        z[rt].rsum = max(z[z[rt].ch[0]].rsum + z[rt].x, 0ll);
        z[rt].msum = max(z[z[rt].ch[0]].msum, z[z[rt].ch[0]].rsum + z[rt].x);
    } else if (z[rt].ch[1]) {
        z[rt].lsum = max(z[z[rt].ch[1]].lsum + z[rt].x, 0ll);
        z[rt].rsum = max(max(z[z[rt].ch[1]].rsum, z[z[rt].ch[1]].sum + z[rt].x), 0ll);
        z[rt].msum = max(z[z[rt].ch[1]].msum, z[z[rt].ch[1]].lsum + z[rt].x);
    } else {
        z[rt].lsum = z[rt].rsum = max(z[rt].x, 0ll);
        z[rt].msum = z[rt].x;
    }
}
int cnt;
inline int newnode(int v = 0) {
    z[++cnt].x = z[cnt].msum = z[cnt].sum = v;
    z[cnt].lsum = z[cnt].rsum = max(v, 0);
    z[cnt].sze = 1;
    z[cnt].pri = rand();
    return cnt;
}
inline int merge(int x, int y) {
    if(!x || !y) return x + y;
    if(z[x].pri < z[y].pri) {
        z[x].ch[1] = merge(z[x].ch[1], y);
        update(x);
        return x;
    } else {
        z[y].ch[0] = merge(x, z[y].ch[0]);
        update(y);
        return y;
    }
}
inline void split(int rt, int k, int &x, int &y) {
    if(!rt) x = y = 0;
    else {
        if(k <= z[z[rt].ch[0]].sze) {
            y = rt, split(z[rt].ch[0], k, x, z[rt].ch[0]);
        } else {
            x = rt, split(z[rt].ch[1], k - z[z[rt].ch[0]].sze - 1, z[rt].ch[1], y);
        }
        update(rt);
    }
}
int n, m, xx, yy, zz, rot;
inline void debug() {
    go(rt, 1, cnt, 1) {
        printf("%d: pri:%d, sze:%d, ch[0]:%d, ch[1]:%d, x:%d\n", rt, z[rt].pri, z[rt].sze, z[rt].ch[0], z[rt].ch[1], z[rt].x);
    }
    printf("\n");
}
int main() {
    srand((unsigned)time(NULL));
    n = read();
    go(i, 1, n, 1) {
        int x = read();
        split(rot, i, xx, yy);
        rot = merge(merge(xx, newnode(x)), yy);
    } 
    m = read();
    go(i, 1, m, 1) {
        char s;
        cin >> s;
        int x = read(), v;
        if(s == 'I') {
            v = read();
            split(rot, x - 1, xx, yy);  
            rot = merge(merge(xx, newnode(v)), yy);
            
        } else if(s == 'D') {
            split(rot, x, xx, zz);
            split(xx, x - 1, xx, yy);
            yy = merge(z[yy].ch[0], z[yy].ch[1]);
            rot = merge(merge(xx, yy), zz);
        } else if(s == 'R') {
            v = read();
            split(rot, x, xx, zz);
            split(xx, x - 1, xx, yy);
            z[yy].x = v;
            z[yy].sum = z[yy].msum = v;
            z[yy].lsum = z[yy].rsum = max(v, 0);
            rot = merge(merge(xx, yy), zz);
        } else if(s == 'Q') {
            v = read();
            split(rot, v, xx, zz);
            split(xx, x - 1, xx, yy);
            printf("%lld\n", z[yy].msum);
            rot = merge(merge(xx, yy), zz);
        }
//      debug();
    }
    return 0;
}

GSS7

给定一棵树,有$ N (N ≤ 100000) $个节点,每一个节点都有一个权值 \(x[i] (<= 10000)\)

你需要执行 \(Q (Q ≤ 100000)\) 次操作:

  • \(1\) \(a\) \(b\) 查询 \((a,b)\) 这条链上的最大子段和,可以为空(即输出\(0\)
  • \(2\) \(a\) \(b\) \(c\)\((a,b)\) 这条链上的所有点权变为 \(c (|c| <= 10000)\)

思路

树链剖分套线段树维护区间最大子段和,基本没啥思路,直接套。不过代码细节较多。代码过长,引起极度不适。

code:

#include <algorithm>
#include <cmath>
#include <cstdio>
#include <ctime>
#include <iostream>
using namespace std;
#define go(i, j, n, k) for (int i = j; i <= n; i += k)
#define fo(i, j, n, k) for (int i = j; i >= n; i -= k)
#define mn 100020
#define inf 2147483647
#define ll long long
#define root 1, n, 1
#define lson l, m, rt << 1
#define rson m + 1, r, rt << 1 | 1
#define bson l, r, rt
inline int read(){
    int f = 1, x = 0;char ch = getchar();
    while (ch > '9' || ch < '0'){if (ch == '-')f = -f;ch = getchar();}
    while (ch >= '0' && ch <= '9'){x = x * 10 + ch - '0';ch = getchar();}
    return x * f;
}
inline void write(int x){
    if (x < 0)putchar('-'),x = -x;
    if (x > 9)write(x / 10);
    putchar(x % 10 + '0');
}
//This is AC head above...
int n, m, r;
struct tree{
    int sum, lsum, rsum, msum;
    tree() { sum = lsum = rsum = msum = 0; }
};
int dep[mn], sze[mn], son[mn], fa[mn], id[mn], top[mn], b[mn];
int cnt;
// Array -------------------------------------------------------------------
struct SegmentTree{
    tree z[mn << 2];
    int col[mn << 2];
    int cd[mn << 2];
    inline void update(int rt){
        z[rt].sum = z[rt << 1].sum + z[rt << 1 | 1].sum;
        z[rt].lsum = max(z[rt << 1].lsum, z[rt << 1 | 1].lsum + z[rt << 1].sum);
        z[rt].rsum = max(z[rt << 1 | 1].rsum, z[rt << 1].rsum + z[rt << 1 | 1].sum);
        z[rt].msum = max({z[rt << 1].msum, z[rt << 1 | 1].msum, z[rt << 1].rsum + z[rt << 1 | 1].lsum});
    }
    inline tree operation(tree a,tree b){
        tree res;
        res.sum = a.sum + b.sum;
        res.lsum = max(a.lsum, a.sum + b.lsum);
        res.rsum = max(b.rsum, b.sum + a.rsum);
        res.msum = max({a.msum, b.msum, a.rsum + b.lsum});
        return res;
    }
    inline void push_col(int l,int r,int rt){
        if(cd[rt]) {
            int m = (l + r) >> 1;
            cd[rt << 1] = cd[rt << 1 | 1] = 1;
            col[rt << 1] = col[rt << 1 | 1] = col[rt];
            z[rt << 1].sum = (m - l + 1) * col[rt];
            z[rt << 1 | 1].sum = (r - m) * col[rt];
            z[rt << 1].lsum = z[rt << 1].rsum = z[rt << 1].msum = max(z[rt << 1].sum, 0);
            z[rt << 1 | 1].lsum = z[rt << 1 | 1].rsum = z[rt << 1 | 1].msum = max(z[rt << 1 | 1].sum, 0);
            cd[rt] = 0;
        }
    }
    inline void build(int l,int r,int rt){
        if(l==r){
            z[rt].sum = b[l];
            z[rt].lsum = z[rt].rsum = z[rt].msum = max(z[rt].sum, 0);
            return;
        }
        int m = (l + r) >> 1;
        build(lson);
        build(rson);
        update(rt);
    }
    inline void modify(int l,int r,int rt,int nowl,int nowr,int v){
        if(nowl<=l && r<=nowr){
            col[rt] = v;
            cd[rt] = 1;
            z[rt].sum = (r - l + 1) * v;
            z[rt].lsum = z[rt].rsum = z[rt].msum = max(z[rt].sum, 0);
            return;
        }
        int m = (l + r) >> 1;
        push_col(bson);
        if(nowl<=m)
            modify(lson, nowl, nowr, v);
        if(m<nowr)
            modify(rson, nowl, nowr, v);
        update(rt);
    }
    inline tree query(int l,int r,int rt,int nowl,int nowr){
        if(nowl<=l && r<=nowr){
            return z[rt];
        }
        int m = (l + r) >> 1;
        push_col(bson);
        if(nowl<=m){
            if(m<nowr)
                return operation(query(lson, nowl, nowr), query(rson, nowl, nowr));
            else
                return query(lson, nowl, nowr);
        }else{
            return query(rson, nowl, nowr);
        }
    }
} tr;
// Line Segment Tree ------------------------------------------------
struct edge{
    int v, nxt;
} e[mn << 1];
int h[mn], w[mn], p;
inline void add(int a,int b){
    e[++p].nxt = h[a];
    h[a] = p;
    e[p].v = b;
}
// Adjacency List ---------------------------------------------------------------
void dfs1(int x,int f,int deep){
    dep[x] = deep;
    sze[x] = 1;
    fa[x] = f;
    int maxson = -1;
    rep(i,x){
        int v = e[i].v;
        if(v == f)
            continue;
        dfs1(v, x, deep + 1);
        sze[x] += sze[v];
        if (maxson < sze[v])
            maxson = sze[v], son[x] = v;
    }
}
void dfs2(int x,int topf){
    id[x] = ++cnt;
    b[id[x]] = w[x];
    top[x] = topf;
    if(!son[x])
        return;
    dfs2(son[x], topf);
    rep(i,x){
        int v = e[i].v;
        if(v==fa[x] || v==son[x])
            continue;
        dfs2(v, v);
    }
}
// DFS ----------------------------------------------------------------
/*
inline void modifyTree(int x,int y,int v){
    while(top[x] != top[y]){
        if(dep[top[x]] < dep[top[y]])
            swap(x, y);
        tr.modify(root, id[top[x]], id[x], v);
        x = fa[top[x]];
    }
    if(dep[x] > dep[y])
        swap(x, y);
    tr.modify(root, id[x], id[y], v);
}
*/
inline void modifyTree(int x,int y,int v){
    while(top[x] != top[y]){
        if(dep[top[x]] > dep[top[y]]){
            tr.modify(root, id[top[x]], id[x], v);
            x = fa[top[x]];
        }else{
            tr.modify(root, id[top[y]], id[y], v);
            y = fa[top[y]];
        }
    }
    if(dep[x] > dep[y])
        tr.modify(root, id[y], id[x], v);
    else
        tr.modify(root, id[x], id[y], v);
}
inline tree queryTree(int x,int y){
    tree lt, rt;
    while(top[x] != top[y]){
        if(dep[top[x]] > dep[top[y]]){
            tree get = tr.query(root, id[top[x]], id[x]);
            lt.msum = max({lt.msum, get.msum, lt.lsum + get.rsum});
            lt.lsum = max(lt.lsum + get.sum, get.lsum);
            lt.rsum = max(lt.rsum, get.rsum + lt.sum);
            lt.sum += get.sum;
            x = fa[top[x]];
        }else{
            tree get = tr.query(root, id[top[y]], id[y]);
            rt.msum = max({rt.msum, get.msum, rt.lsum + get.rsum});
            rt.lsum = max(rt.lsum + get.sum, get.lsum);
            rt.rsum = max(rt.rsum, rt.sum + get.rsum);
            rt.sum += get.sum;
            y = fa[top[y]];
        }
        //cout << "lalala\n";
    }
    //printf("%d %d %d %d\n%d %d %d %d\n", lt.lsum, lt.rsum, lt.sum, lt.msum, rt.lsum, rt.rsum, rt.sum, rt.msum);
    if(dep[x] < dep[y]){
        tree get = tr.query(root, id[x], id[y]);
        rt.msum = max({rt.msum, get.msum, rt.lsum + get.rsum});
        rt.lsum = max(get.lsum, get.sum + rt.lsum);
        rt.rsum = max(rt.rsum, rt.sum + get.rsum);
        rt.sum += get.sum;
    }else{
        tree get = tr.query(root, id[y], id[x]);
        lt.msum = max({lt.msum, get.msum, lt.lsum + get.rsum});
        lt.lsum = max(get.lsum, get.sum + lt.lsum);
        lt.rsum = max(lt.rsum, lt.sum + get.rsum);
        lt.sum += get.sum;
    }
    //cout << "lalala\n";
    tree res;
    res.sum = lt.sum + rt.sum;
    res.lsum = max(lt.lsum, lt.sum + rt.rsum);
    res.rsum = max(rt.lsum, rt.sum + lt.rsum);
    res.msum = max({lt.msum, rt.msum, lt.lsum + rt.lsum});
    return res;
}
// Modify and Query ------------------------------------------------------
int main()
{
    n = read();
    r = 1;
    go(i, 1, n, 1) w[i] = read();
    go(i, 1, n - 1, 1){
        int x = read(), y = read();
        add(x, y), add(y, x);
    }
    dfs1(r, 0, 1);
    dfs2(r, r);
    tr.build(root);
    m = read();
    go(i, 1, m, 1){
        int s = read(), x = read(), y = read();
        if(s==2){
            int v = read();
            modifyTree(x, y, v);
        }else{
            cout << queryTree(x, y).msum << "\n";
            //cout << "lalala\n";
        }
    }
    return 0;
}

GSS8

给你一个序列,\(A[0], A[1]...A[N - 1].\) \((0 \le A[i] \lt 2^{32})\)

你需要支持 Q 次操作

  • \(I\) \(pos\) \(val\) 插入一个数字在第 \(pos\) 个位置之前,\(0 \le val \lt 2^{32}\)
    , 如果\(pos=current\) \(length\),那么你需要将这个数字放到序列末尾
  • D pos 删除第 \(pos\) 个元素
  • R pos val 将第 \(pos\) 个元素变为\(val(0 \le val \lt 2^{32})\)
  • Q l r k 询问\((\sum\limits_{i=l}^{r} A[i] * (i - l + 1) ^ k) \mod 2^{32}\),保证\(0 \le k \le 10\)

思路

对于每一个 k 都维护一个答案。

如果 k = 0, 就是区间和,如果 k = 1,我们可以用这样的式子写:

z[rt].ans[1] = z[z[rt].ch[0]].ans[1] + z[z[rt].ch[1]].ans[1] + (z[z[rt].ch[1]].sum * z[z[rt].ch[0]].sze)

但如果我们考虑 k > 1,我们仍考虑左右合并,但不是左边不动的,我们把表达式化简一下。(以下计算过程参考 hzk_cpp 巨佬的 计算过程)

\(A[i](i - l + 1)^k\)

= \(A[i]((mid - l + 1) + (i - mid))^k\)

\(x = i - l + 1\),实际就是左区间的长度,设 $ rs.ans[j] $ 作为 \([min + 1, r]\)\(k = j\) 的答案。

= \(A[i](x + i - mid)^k\)

由二项式定理得

= \(A[i]\sum_{j=0}^kC_k^jx^{k-j}(i - mid)^j\)

我们右边所有的值加起来,得:

= \(\sum_{i=mid+1}^rA[i]\sum_{j=0}^kC_k^jx^{k-j}(i - mid)^j\)

= \(\sum_{i=mid+1}^r\sum_{j=0}^kA[i]C_k^jx^{k-j}(i - mid)^j\)

= \(\sum_{j=0}^kC_k^jx^{k-j}rs.ans[j]\)

这个式子直接可以暴力在update函数中直接更新,毕竟 \(k <= 10\),不伤身体。

目前只有Splay版,FHQ Treap版正在调。

code:

#include <algorithm>
#include <cmath>
#include <cstdio>
#include <ctime>
#include <iostream>
using namespace std;
#define go(i, j, n, k) for (int i = j; i <= n; i += k)
#define fo(i, j, n, k) for (int i = j; i >= n; i -= k)
#define mn 200010
#define inf 2147483647
#define ll unsigned int
inline ll read(){
    ll x = 0; char ch = getchar(); 
    while (ch > '9' || ch < '0') { ch = getchar(); }
    while (ch >= '0' && ch <= '9') { x = x * 10 + ch - '0'; ch = getchar(); }
    return x;
}
inline void write(int x){
    if (x < 0) putchar('-'), x = -x;
    if (x > 9) write(x / 10);
    putchar(x % 10 + '0');
}
//This is AC head above...
vector<int> ljt;
struct tree{
    int ch[2], sze, fa;
    ll w, ans[11];
    tree(int s, int f, int v)
        : sze(s), fa(f), w(v) { ch[0] = ch[1] = 0; 
            go(i, 0, 10, 1) ans[i] = 0; }
    tree() : tree(0, 0, 0) {}
};
int n, m, tot;
ll a[mn];
tree z[mn];
ll po[mn], C[11][11];
inline int newnode(int v = 0){
    int rt;
    if (ljt.empty())
        rt = ++tot;
    else
        rt = ljt.back(), ljt.pop_back();
    z[rt].fa = z[rt].ch[0] = z[rt].ch[1] = 0;
    z[rt].sze = 1;
    z[rt].w = v;
    return rt;
}
inline void deletenode(int rt){
    z[rt].fa = z[rt].ch[0] = z[rt].ch[1] = z[rt].w = 0;
    go(i, 0, 10, 1) z[rt].ans[i] = 0;
    z[rt].sze = 1;
    ljt.push_back(rt);
}
inline void update(int rt) {
    z[rt].sze = 1;
    if(z[rt].ch[0]) z[rt].sze += z[z[rt].ch[0]].sze;
    if(z[rt].ch[1]) z[rt].sze += z[z[rt].ch[1]].sze;
    po[0] = 1ll;
    go(i, 1, 10, 1)
        po[i] = po[i - 1] * (z[z[rt].ch[0]].sze + 1);
    go(i, 0, 10, 1) {
        z[rt].ans[i] = z[z[rt].ch[0]].ans[i] + z[rt].w * po[i];
        go(j, 0, i, 1)
            z[rt].ans[i] = z[rt].ans[i] + z[z[rt].ch[1]].ans[j] * po[i - j] * C[i][j];
    }
}
inline int iden(int rt) {
    return z[z[rt].fa].ch[0] == rt ? 0 : 1;
}
inline void connect(int x, int y, int son) {
    z[x].fa = y;
    z[y].ch[son] = x;
}
inline void rotate(int x) {
    int y = z[x].fa;
    int moot = z[y].fa;
    int yson = iden(x);
    int mootson = iden(y);
    int B = z[x].ch[yson ^ 1];
    connect(B, y, yson), connect(y, x, yson ^ 1), connect(x, moot, mootson);
    update(y), update(x);
}
inline void splay(int x, int &k) {
    if (x == k)
        return;
    int p = z[k].fa;
    while (z[x].fa != p) {
        int y = z[x].fa;
        if (z[y].fa != p)
            rotate(iden(y) ^ iden(x) ? x : y);
        rotate(x);
    }
    k = x;
}
inline int findkth(int rt, int k) {
    while (1119) {
        if (z[rt].ch[0] && k <= z[z[rt].ch[0]].sze)
            rt = z[rt].ch[0];
        else {
            if (z[rt].ch[0])
                k -= z[z[rt].ch[0]].sze;
            if (!--k)
                return rt;
            rt = z[rt].ch[1];
        }
    }
}
inline void insert(int &rt, int p, int v) {
    int x = findkth(rt, p);
    splay(x, rt);
    int y = findkth(rt, p + 1);
    int ooo = z[rt].ch[1];
    splay(y, ooo);
    z[y].ch[0] = newnode(v);
    z[z[y].ch[0]].fa = y;
    update(z[y].ch[0]), update(y), update(x);
}
inline void erase(int &rt, int p) {
    int y = findkth(rt, p);
    splay(y, rt);
    int x = findkth(rt, p + 1);
    int ooo = z[rt].ch[1];
    splay(x, ooo);
    int oo = z[x].ch[1];
    z[oo].fa = y;
    z[y].ch[1] = oo;
    deletenode(x);
    update(y);
}
inline int getRange(int &rt, int l, int r) {
    int x = findkth(rt, l);
    splay(x, rt);
    int y = findkth(rt, r + 2);
    int ooo = z[rt].ch[1];
    splay(y, ooo);
    return z[y].ch[0];
}
inline void modify(int &rt, int p, ll v) {
    int x = findkth(rt, p + 1);
    splay(x, rt);
    z[x].w = v;
    update(x);
}
inline ll query(int &rt, int l, int r, int k) {
    int x = getRange(rt, l, r);
    return z[x].ans[k];
}
inline void build(int rt, int l, int r) {
    int m = (l + r) >> 1;
    z[rt].w = a[m];
    if (l <= m - 1) {
        z[rt].ch[0] = newnode();
        z[z[rt].ch[0]].fa = rt;
        build(z[rt].ch[0], l, m - 1);
    }
    if (m + 1 <= r) {
        z[rt].ch[1] = newnode();
        z[z[rt].ch[1]].fa = rt;
        build(z[rt].ch[1], m + 1, r);
    }
    update(rt);
}
inline void init() 
{
    go(i, 0, 10, 1) C[i][0] = C[i][i] = 1;
    go(i, 1, 10, 1) 
        go(j, 1, i, 1)
            C[i][j] = C[i - 1][j - 1] + C[i - 1][j];
//    go(i, 0, 10, 1) 
//        go(j, 0, 10, 1) 
//            printf("%5d%c", C[i][j], (j == 10) ? '\n' : ' ');

}
int main()
{
    init();
    n = read();
    go(i, 1, n, 1) a[i] = read();
    int rot = ++tot;
    build(rot, 0, n + 1);
    m = read();
    go(i, 1, m, 1)
    {
        char s;
        cin >> s;
        if (s == 'I') {
            int p = read() + 1, v = read();
            insert(rot, p, v);
        } else if (s == 'D') {
            int p = read() + 1;
            erase(rot, p);
        } else if (s == 'R') {
            int p = read() + 1, x = read();
            modify(rot, p, x);
        } else {
            int x = read() + 1, y = read() + 1, z = read();
            printf("%lld\n", query(rot, x, y, z));
        }
    }
    return 0;
}

所有系列题目完成于 2019 / 3 / 25 23 : 02 : 29

以上是关于GSS1 ~ 8解题报告 完整版的主要内容,如果未能解决你的问题,请参考以下文章

SPOJ GSS系列解题报告

果断收藏!这是全球最权威的区块链行业报告(附中文完整版下载手册)

二叉树的前序中序后序层序遍历,递归和迭代两大类解题思路,每类细分不同解法完整版附PDF文档

果断收藏!156页PPT全景展现全球区块链发展(附完整版下载手册)

某邀请赛misc key家用完整版

萝卜学院产品经理实战训练营课程(67课)完整版