P1045 麦森数

Posted chen99

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了P1045 麦森数相关的知识,希望对你有一定的参考价值。

题目链接:https://www.luogu.org/problemnew/show/P1045

题目描述

形如2^P-1的素数称为麦森数,这时P一定也是个素数。但反过来不一定,即如果PP是个素数,2^P-1不一定也是素数。到1998年底,人们已找到了37个麦森数。最大的一个是P=3021377,它有909526位。麦森数有许多重要应用,它与完全数密切相关。

任务:从文件中输入P1000<P<3100000),计算2^P-1的位数和最后500位数字(用十进制高精度数表示)

输入输出格式

输入格式:

 

文件中只包含一个整数P(1000<P<3100000

 

输出格式:

 

第一行:十进制高精度数2^P-1的位数。

第2-11行:十进制高精度数2^P-1的最后500位数字。(每行输出50位,共输出10行,不足500位时高位补0)

不必验证2^P-1P是否为素数。

 

输入输出样例

输入样例#1:

1279

 

输出样例#1:

技术图片技术图片

 

 

对于求2^p的位数可以转化为求10^q的位数。

2^p=10^q 

q=p*log102

2^p的位数就为q+1

后500位就直接用数组模拟

#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
#define ll long long
int p,len,a[1000];
ll poww(ll x,ll y)
{
    ll ans=1;
    while(y)
    {
        if(y&1)ans*=x;
        x*=x;
        y/=2;
    }
    return ans;
}
int main()
{
    cin>>p;
    len=p*log10(2)+1;//math自带log10函数
    ll cnt1=p/20,cnt2=p%20,q=poww(2,20);
    cout<<len<<endl;
    a[1]=1;
    for(int i=1;i<=cnt1;i++)
    {
        for(int j=1;j<=500;j++)
        a[j]*=q;
        for(int j=1;j<=500;j++)
        {
            a[j+1]+=a[j]/10;
            a[j]=a[j]%10;
        }
    }
    for(int i=1;i<=cnt2;i++)
    {
        for(int j=1;j<=500;j++)
        a[j]*=2;
        for(int j=1;j<=500;j++)
        {
            a[j+1]+=a[j]/10;
            a[j]=a[j]%10;
        }
    }
    a[1]--;
    int cnt=0;
    for(int i=500;i>=1;i--)
    {
        cout<<a[i];
        cnt++;
        if(cnt%50==0)cout<<endl;
    }
    return 0;
}

 

以上是关于P1045 麦森数的主要内容,如果未能解决你的问题,请参考以下文章

快速幂+分治(洛谷P1045 麦森数 noip2003)

麦森数

2003麦森数

算法训练 麦森数

noip2003 麦森数

高精度乘法NOIP2003麦森数