背包问题

Posted mxj961116

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了背包问题相关的知识,希望对你有一定的参考价值。

一、01背包

有N件物品和一个容量为V的背包。第i件物品的价格(即体积,下同)是w[i],价值是c[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

这是最基础的背包问题,总的来说就是:选还是不选,这是个问题

相当于用f[i][j]表示前i个背包装入容量为v的背包中所可以获得的最大价值。

对于一个物品,只有两种情况

  情况一: 第i件不放进去,这时所得价值为:f( i-1, v )

  情况二: 第i件放进去,这时所得价值为:f( i-1, v-w[i] )+c[i] 

状态转移方程为:f[i][v] = max(f[i-1][v],  f[i-1][v-w[i]]+c[i])

public class KnapSack01 {
    public static int knapSack(int[] w, int[] v, int C) {
        int size = w.length;
        if (size == 0) {
            return 0;
        }

        int[][] dp = new int[size][C + 1];
        //初始化第一行
        //仅考虑容量为C的背包放第0个物品的情况
        for (int i = 0; i <= C; i++) {
            dp[0][i] = w[0] <= i ? v[0] : 0;
        }
        //填充其他行和列
        for (int i = 1; i < size; i++) {
            for (int j = 0; j <= C; j++) {
                dp[i][j] = dp[i - 1][j];
                if (w[i] <= j) {
                    dp[i][j] = Math.max(dp[i][j], v[i] + dp[i - 1][j - w[i]]);
                }
            }
        }
        return dp[size - 1][C];
    }

    public static void main(String[] args) {
        int[] w = {2, 1, 3, 2};
        int[] v = {12, 10, 20, 15};
        System.out.println(knapSack(w, v, 5));
    }
}

上面的动态规划算法使用了O(n*C)的空间复杂度(因为我们使用了二维数组来记录子问题的解),其实我们完全可以只使用一维数组来存放结果,但同时我们需要注意的是,为了防止计算结果被覆盖,我们必须从后向前分别进行计算

设 f[v]表示重量不超过v公斤的最大价值, 则f[v]=max(f[v],f[v-w[i]]+c[i]) ,当v>=w[i],1<=i<=n

假设我们要计算F(i,4),我们需要用到的值为F(i-1,4)和F( i-1,4-w[i] ),因此为了防止结果被覆盖,我们需要从后向前依次计算结果

最终动态规划的代码如下

public class KnapSack01 {
    public static int knapSack(int[] w, int[] v, int C) {
        int size = w.length;
        if (size == 0) {
            return 0;
        }

        int[] dp = new int[C + 1];
        //初始化第一行
        //仅考虑容量为C的背包放第0个物品的情况
        for (int i = 0; i <= C; i++) {
            dp[i] = w[0] <= i ? v[0] : 0;
        }

        for (int i = 1; i < size; i++) {
            for (int j = C; j >= w[i]; j--) {
                dp[j] = Math.max(dp[j], v[i] + dp[j - w[i]]);
            }
        }
        return dp[C];
    }

    public static void main(String[] args) {
        int[] w = {2, 1, 3, 2};
        int[] v = {12, 10, 20, 15};
        System.out.println(knapSack(w, v, 5));
    }
}

 二、完全背包

 三、多重背包

以上是关于背包问题的主要内容,如果未能解决你的问题,请参考以下文章

使用喷气背包导航将自定义过渡动画添加到底部导航设置

在片段的后按防止使用导航图调用前一个片段的 onViewCreated

Android Jetpack 导航禁用滚动位置

0-1背包问题的回溯法代码

c语言背包问题,求高手解答

动态规划_01背包_完全背包_多重背包_分组背包