dp--最大区间和变形-cf-1155D

Posted shuizhidao

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了dp--最大区间和变形-cf-1155D相关的知识,希望对你有一定的参考价值。

dp--最大区间和变形-cf-1155D

D. Beautiful Array

time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

You are given an array aa consisting of nn integers. Beauty of array is the maximum sum of some consecutive subarray of this array (this subarray may be empty). For example, the beauty of the array [10, -5, 10, -4, 1] is 15, and the beauty of the array [-3, -5, -1] is 0.

You may choose at most one consecutive subarray of aa and multiply all values contained in this subarray by xx. You want to maximize the beauty of array after applying at most one such operation.

Input

The first line contains two integers nn and xx (1≤n≤3?105,?100≤x≤1001≤n≤3?105,?100≤x≤100) — the length of array aa and the integer xxrespectively.

The second line contains nn integers a1,a2,…,ana1,a2,…,an (?109≤ai≤109?109≤ai≤109) — the array aa.

Output

Print one integer — the maximum possible beauty of array aa after multiplying all values belonging to some consecutive subarray xx.

Examples

input

Copy

5 -2
-3 8 -2 1 -6

output

Copy

22

input

Copy

12 -3
1 3 3 7 1 3 3 7 1 3 3 7

output

Copy

42

input

Copy

5 10
-1 -2 -3 -4 -5

output

Copy

0

Note

In the first test case we need to multiply the subarray [-2, 1, -6], and the array becomes [-3, 8, 4, -2, 12] with beauty 22 ([-3, 8, 4, -2, 12]).

In the second test case we don‘t need to multiply any subarray at all.

In the third test case no matter which subarray we multiply, the beauty of array will be equal to 0.

状态转移方程如下

#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <cmath>
#include <sstream>
#include <algorithm>
#include <set>
#include <map>
#include <vector>
#include <queue>
#include <iomanip>
#include <stack>
#include <climits>
#include <fstream>

using namespace std;

typedef long long LL;
const int INF = 0x3f3f3f3f;
const int N = 300005;
const int MOD = 1e9 + 7;

#define F(i, l, r) for(int i = l;i <= (r);++i)
#define RF(i, l, r) for(int i = l;i >= (r);--i)

int main()
{
    LL n, m, t, ans = 0, p = 0, sum1 = 0, sum2 = 0;
    cin >> n >> m;
    F(i, 1, n)
    {
        cin >> t;
        sum1 = max(sum1 + t, 0ll);//d[i][0] = max(0ll,d[i-1][0]+a[i]);
        sum2 = max(sum2 + m * t, sum1);//d[i][1] = max( 0ll, max(d[i-1][0],d[i-1][1])+a[i]*x);
        p = max(p + t, sum2);// d[i][2] = max( 0ll, max(d[i-1][0],  max(d[i-1][1],d[i-1][2]) )+ a[i]);
        ans = max(ans, p);
    }
    cout << ans << endl;
    return 0;
}

以上是关于dp--最大区间和变形-cf-1155D的主要内容,如果未能解决你的问题,请参考以下文章

转载+删改:算法讲解之Dynamic Programing —— 区间DP [变形:环形DP]

Codeforces 984 D - XOR-pyramid

poj1797(dijstra变形,求最小边的最大值)

NC13230 合并回文子串(区间dp)

HDU 6249 Alice’s Stamps(dp)

洛谷P1018乘积最大——区间DP