python 实现堆和堆排序

Posted dairuiquan

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python 实现堆和堆排序相关的知识,希望对你有一定的参考价值。

"""
堆是一种完全二叉树,有最大堆和最小堆两种。
最大堆:对于每个非叶子结点V,V的值都比它的两个孩子结点大,称为最大堆特性(heap order property),
       最大堆里面的根总是储存最大值,最小值储存在叶子结点。
最小堆:和最大堆相反,每个非叶子结点V,它的两个孩子的值都比V的值大。
"""

# 实现最大堆

# 首先实现一个数组
class Array(object):

    def __init__(self, size=32):
        self._size = size
        self._items = [None] * size

    def __getitem__(self, index):
        return self._items[index]

    def __setitem__(self, index, value):
        self._items[index] = value

    def __len__(self):
        return self._size

    def clear(self, value = None):
        for i in range(self._size):
            self._items[i] = value


    def __iter__(self):
        for item in self._items:
            yield item
# 用数组来实现堆。
# 因为堆是完全二叉树,舍某结点的下标为i,
#  它的父结点为 int((i-1)/2),左孩子结点为2*i + 1, 右孩子结点为2*i +2, 超出下标表示没有孩子结点



class MaxHeap(object):
    """dmaxsizetring for MaxHeap"""
    def __init__(self, maxsize = None):
        self.maxsize = maxsize
        self._elements = Array(maxsize)
        self._count = 0


    def __len__(self):
        return self._count


    def add(self, value):
        if self._count>=self.maxsize:
            raise Exception("Full")
        self._elements[self._count] = value
        self._count += 1
        self._siftup(self._count-1)    # 因为第一个结点是从0开始的,最后一个结点是结点个数减一
        ‘‘‘
        partent = int((n-1)/2)
        self._elements[n] = value
        while self._elements[n] > self._elements[partent]:
            self._elements[n], self._elements[partent] = self._elements[partent], self._elements[n]
        ‘‘‘

    def _siftup(self, ndx):     # 递归交换,知道满足最大堆特性
        if ndx > 0:
            parent = int((ndx-1)/2)
            if self._elements[ndx] > self._elements[parent]:
                self._elements[ndx], self._elements[parent] = self._elements[parent], self._elements[ndx]
                self._siftup(parent)


    def extract(self):      # 拿掉堆的最大值
        if self._count <= 0:
            raise Exception(empty)
        value = self._elements[0]
        self._elements[0] = self._elements[self._count-1]   # 把最后一个结点赋值给根结点 然后进行siftdown 操作
        self._count -= 1
        self._siftdown(0)
        return value


    def _siftdown(self, ndx):
        left = ndx * 2 + 1
        right = ndx * 2 +2
        largest = ndx

        # 保证下标不越界, 左孩子大于该结点, 而且左孩子大于右孩子
        if  (left < self._count and
            self._elements[left] >= self._elements[largest] and
            self._elements[left] >= self._elements[right]):
            largest = left   # 把最大的下标赋值给left 孩子

        elif (right < self._count and
            self._elements[right] >= self._elements[largest] and
            self._elements[right] >= self._elements[left]):
            largest = right

        if largest != ndx:
            self._elements[ndx], self._elements[largest] = self._elements[largest], self._elements[ndx]
            self._siftdown(largest)



# 堆堆倒叙排序
def heapsort_reverse(array):
    length = len(array)
    maxheap = MaxHeap(length)
    l = []
    for i in range(length):
        maxheap.add(i)
    for i in range(length):
        l.append(maxheap.extract())
    return l



def test_max_heap():
    import random
    n = 5
    h = MaxHeap(n)
    for i in range(n):
        h.add(i)
    for i in reversed(range(n)):
        assert i == h.extract()

    l = list(range(10))
    random.shuffle(l)
    assert heapsort_reverse(l) == sorted(l, reverse=True)

 

以上是关于python 实现堆和堆排序的主要内容,如果未能解决你的问题,请参考以下文章

关于堆和堆排序

堆和堆排序

堆和堆排序

堆和堆的应用:堆排序和优先队列

PHP堆和堆排序

数据结构与算法之美-堆和堆排序