python 实现堆和堆排序
Posted dairuiquan
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python 实现堆和堆排序相关的知识,希望对你有一定的参考价值。
""" 堆是一种完全二叉树,有最大堆和最小堆两种。 最大堆:对于每个非叶子结点V,V的值都比它的两个孩子结点大,称为最大堆特性(heap order property), 最大堆里面的根总是储存最大值,最小值储存在叶子结点。 最小堆:和最大堆相反,每个非叶子结点V,它的两个孩子的值都比V的值大。 """ # 实现最大堆 # 首先实现一个数组 class Array(object): def __init__(self, size=32): self._size = size self._items = [None] * size def __getitem__(self, index): return self._items[index] def __setitem__(self, index, value): self._items[index] = value def __len__(self): return self._size def clear(self, value = None): for i in range(self._size): self._items[i] = value def __iter__(self): for item in self._items: yield item # 用数组来实现堆。 # 因为堆是完全二叉树,舍某结点的下标为i, # 它的父结点为 int((i-1)/2),左孩子结点为2*i + 1, 右孩子结点为2*i +2, 超出下标表示没有孩子结点 class MaxHeap(object): """dmaxsizetring for MaxHeap""" def __init__(self, maxsize = None): self.maxsize = maxsize self._elements = Array(maxsize) self._count = 0 def __len__(self): return self._count def add(self, value): if self._count>=self.maxsize: raise Exception("Full") self._elements[self._count] = value self._count += 1 self._siftup(self._count-1) # 因为第一个结点是从0开始的,最后一个结点是结点个数减一 ‘‘‘ partent = int((n-1)/2) self._elements[n] = value while self._elements[n] > self._elements[partent]: self._elements[n], self._elements[partent] = self._elements[partent], self._elements[n] ‘‘‘ def _siftup(self, ndx): # 递归交换,知道满足最大堆特性 if ndx > 0: parent = int((ndx-1)/2) if self._elements[ndx] > self._elements[parent]: self._elements[ndx], self._elements[parent] = self._elements[parent], self._elements[ndx] self._siftup(parent) def extract(self): # 拿掉堆的最大值 if self._count <= 0: raise Exception(‘empty‘) value = self._elements[0] self._elements[0] = self._elements[self._count-1] # 把最后一个结点赋值给根结点 然后进行siftdown 操作 self._count -= 1 self._siftdown(0) return value def _siftdown(self, ndx): left = ndx * 2 + 1 right = ndx * 2 +2 largest = ndx # 保证下标不越界, 左孩子大于该结点, 而且左孩子大于右孩子 if (left < self._count and self._elements[left] >= self._elements[largest] and self._elements[left] >= self._elements[right]): largest = left # 把最大的下标赋值给left 孩子 elif (right < self._count and self._elements[right] >= self._elements[largest] and self._elements[right] >= self._elements[left]): largest = right if largest != ndx: self._elements[ndx], self._elements[largest] = self._elements[largest], self._elements[ndx] self._siftdown(largest) # 堆堆倒叙排序 def heapsort_reverse(array): length = len(array) maxheap = MaxHeap(length) l = [] for i in range(length): maxheap.add(i) for i in range(length): l.append(maxheap.extract()) return l def test_max_heap(): import random n = 5 h = MaxHeap(n) for i in range(n): h.add(i) for i in reversed(range(n)): assert i == h.extract() l = list(range(10)) random.shuffle(l) assert heapsort_reverse(l) == sorted(l, reverse=True)
以上是关于python 实现堆和堆排序的主要内容,如果未能解决你的问题,请参考以下文章