201904Online Human Action Recognition Based on Incremental Learning of Weighted Covariance Descripto

Posted captain-dl

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了201904Online Human Action Recognition Based on Incremental Learning of Weighted Covariance Descripto相关的知识,希望对你有一定的参考价值。

 

 

 

 

 

 

论文标题:Online Human Action Recognition Based on Incremental Learning of Weighted Covariance Descriptors

来源/作者机构情况:

技术图片

卧龙岗大学,第一次听说这个学校。竟然是在澳大利亚的一个学校。好吧,华人果然全球了

 

解决问题/主要思想贡献:

使用一个加权协方差因子,来积累前几帧的信息,使用增强学习来实现online learning,可以不用使用分好段的视频来预测动作

 

成果/优点:

 

 

缺点:

 

反思改进/灵感:

#############################################################

论文主要内容与关键点:

1.Introduction

技术图片

前人研究的主要分类方法,缺点是没有办法实时检测

 

技术图片

视频动作的特征表现,主要依靠这两种

2.Related Work

主要介绍了一下,上面两种分类方法,主要的几个研究方法,讲了一下这些的缺点。

技术图片

特别强调了一个苏联人的一个方法,并讲解自己的文字解决了他的两个问题:没有权重的对待不同帧

3.The proposed method


权重方差因子:

技术图片

 技术图片

 

 

 

时间权重的变化:

技术图片

帧权重的变化:

技术图片

 

 这里,能量是结点的动量和势能。

技术图片

 

增量学习:

技术图片

后面还给予了证明。

4.Experimental Results

一些度量性能。还有结果展示

技术图片

后面使用了一些去噪和归一化

动作特征向量的选取:

技术图片

 

使用KNN和SVM进行特征分类

技术图片

展示了在三个数据集上面的结果:

技术图片

技术图片

技术图片

最后一种数据集,是卧龙岗大学自己创造的,适合增量学习。

5The depth and skeleton data will be made available after the paper being accepted for publication at:

http://www.uow.edu.au/˜wanqing/#UOWActionDatasets

https://www.uow.edu.au/~wanqing/#UOWActionDatasets

最后讲解了使用的硬件情况:

技术图片

以及对比,KNN和SVM的情况:

技术图片

 

5.Conclusion

6.附录,

一些公式的证明和推导

 

 

代码实现:

以上是关于201904Online Human Action Recognition Based on Incremental Learning of Weighted Covariance Descripto的主要内容,如果未能解决你的问题,请参考以下文章

论文阅读 Colar: Effective and Efficient Online Action Detection by Consulting Exemplars

论文阅读 Colar: Effective and Efficient Online Action Detection by Consulting Exemplars

redux-thunk初步使用

Liunx-cp命令

如何在python中将日期转换为纪元时间[重复]

Java 中import的用法,以及类的种类