十二.函数式编程
Posted 代码改变生活
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了十二.函数式编程相关的知识,希望对你有一定的参考价值。
函数是Python内建支持的一种封装,我们通过把大段代码拆成函数,通过一层一层的函数调用,就可以把复杂任务分解成简单的任务,这种分解可以称之为面向过程的程序设计。函数就是面向过程的程序设计的基本单元。
而函数式编程(请注意多了一个“式”字)——Functional Programming,虽然也可以归结到面向过程的程序设计,但其思想更接近数学计算。
我们首先要搞明白计算机(Computer)和计算(Compute)的概念。
在计算机的层次上,CPU执行的是加减乘除的指令代码,以及各种条件判断和跳转指令,所以,汇编语言是最贴近计算机的语言。
而计算则指数学意义上的计算,越是抽象的计算,离计算机硬件越远。
对应到编程语言,就是越低级的语言,越贴近计算机,抽象程度低,执行效率高,比如C语言;越高级的语言,越贴近计算,抽象程度高,执行效率低,比如Lisp语言。
函数式编程就是一种抽象程度很高的编程范式,纯粹的函数式编程语言编写的函数没有变量,因此,任意一个函数,只要输入是确定的,输出就是确定的,这种纯函数我们称之为没有副作用。而允许使用变量的程序设计语言,由于函数内部的变量状态不确定,同样的输入,可能得到不同的输出,因此,这种函数是有副作用的。
函数式编程的一个特点就是,允许把函数本身作为参数传入另一个函数,还允许返回一个函数!
Python对函数式编程提供部分支持。由于Python允许使用变量,因此,Python不是纯函数式编程语言。
高阶函数
高阶函数英文叫Higher-order function。什么是高阶函数?我们以实际代码为例子,一步一步深入概念。
变量可以指向函数
以Python内置的求绝对值的函数abs()
为例,调用该函数用以下代码:
#coding=utf-8 print abs(-10)
但是,如果只写abs
呢?
>>> abs <built-in function abs>
可见,abs(-10)
是函数调用,而abs
是函数本身。
要获得函数调用结果,我们可以把结果赋值给变量:
>>> x = abs(-10) >>> x 10
但是,如果把函数本身赋值给变量呢?
>>> f = abs >>> f <built-in function abs>
结论:函数本身也可以赋值给变量,即:变量可以指向函数。
如果一个变量指向了一个函数,那么,可否通过该变量来调用这个函数?用代码验证一下:
函数名也是变量
那么函数名是什么呢?函数名其实就是指向函数的变量!对于abs()
这个函数,完全可以把函数名abs
看成变量,它指向一个可以计算绝对值的函数!
如果把abs
指向其他对象,会有什么情况发生
>>> abs = 10 >>> abs(-10) Traceback (most recent call last): File "<stdin>", line 1, in <module> TypeError: \'int\' object is not callable
把abs
指向10
后,就无法通过abs(-10)
调用该函数了!因为abs
这个变量已经不指向求绝对值函数而是指向一个整数10
!
当然实际代码绝对不能这么写,这里是为了说明函数名也是变量。要恢复abs
函数,请重启Python交互环境。
注:由于abs
函数实际上是定义在import builtins
模块中的,所以要让修改abs
变量的指向在其它模块也生效,要用import builtins; builtins.abs = 10
。
传入函数
既然变量可以指向函数,函数的参数能接收变量,那么一个函数就可以接收另一个函数作为参数,这种函数就称之为高阶函数。
一个最简单的高阶函数:
当我们调用add(-5, 6, abs)
时,参数x
,y
和f
分别接收-5
,6
和abs
,根据函数定义,我们可以推导计算过程为:
#coding=utf-8 def add(x, y, f): return f(x) + f(y) print add(-5,6,abs)
编写高阶函数,就是让函数的参数能够接收别的函数。
map/reduce
Python内建了map()
和reduce()
函数。
如果你读过Google的那篇大名鼎鼎的论文“MapReduce: Simplified Data Processing on Large Clusters”,你就能大概明白map/reduce的概念。
我们先看map。map()
函数接收两个参数,一个是函数,一个是Iterable
,map
将传入的函数依次作用到序列的每个元素,并把结果作为新的Iterator
返回。
举例说明,比如我们有一个函数f(x)=x2,要把这个函数作用在一个list [1, 2, 3, 4, 5, 6, 7, 8, 9]
上,就可以用map()
实现如下:
\\
现在,我们用Python代码实现:
#coding=utf-8 def f(x): return x * x r = map(f,[1, 2, 3, 4, 5, 6, 7, 8, 9]) print list(r)
[1, 4, 9, 16, 25, 36, 49, 64, 81]
map()
传入的第一个参数是f
,即函数对象本身。由于结果r
是一个Iterator
,Iterator
是惰性序列,因此通过list()
函数让它把整个序列都计算出来并返回一个list。
你可能会想,不需要map()
函数,写一个循环,也可以计算出结果:
#coding=utf-8 L = [] def f(x): return x * x for n in [1, 2, 3, 4, 5, 6, 7, 8, 9]: L.append(f(n)) print(L)
的确可以,但是,从上面的循环代码,能一眼看明白“把f(x)作用在list的每一个元素并把结果生成一个新的list”吗?
所以,map()
作为高阶函数,事实上它把运算规则抽象了,因此,我们不但可以计算简单的f(x)=x2,还可以计算任意复杂的函数,比如,把这个list所有数字转为字符串:
的确可以,但是,从上面的循环代码,能一眼看明白“把f(x)作用在list的每一个元素并把结果生成一个新的list”吗?
所以,map()
作为高阶函数,事实上它把运算规则抽象了,因此,我们不但可以计算简单的f(x)=x2,还可以计算任意复杂的函数,比如,把这个list所有数字转为字符串:
#coding=utf-8 print list(map(str,[1,2,3,4,5,6,7,8,9]))
只需要一行代码。
再看reduce
的用法。reduce
把一个函数作用在一个序列[x1, x2, x3, ...]
上,这个函数必须接收两个参数,reduce
把结果继续和序列的下一个元素做累积计算,其效果就是:
reduce(f, [x1, x2, x3, x4]) = f(f(f(x1, x2), x3), x4)
比方说对一个序列求和,就可以用reduce
实现:
#coding=utf-8 from functools import reduce def f(x): return x * x def add(x,y): return x + y print reduce(add,[1,3,5,7,9])
25
当然求和运算可以直接用Python内建函数sum()
,没必要动用reduce
。
但是如果要把序列[1, 3, 5, 7, 9]
变换成整数13579
,reduce
就可以派上用场:
from functools import reduce def f(x): return x * x def add(x,y): return x + y def fn(x,y): return x * 10 + y print reduce(fn,[1,3,5,7,9])
13579
这个例子本身没多大用处,但是,如果考虑到字符串str
也是一个序列,对上面的例子稍加改动,配合map()
,我们就可以写出把str
转换为int
的函数:
>>> from functools import reduce >>> def fn(x, y): ... return x * 10 + y ... >>> def char2num(s): ... return {\'0\': 0, \'1\': 1, \'2\': 2, \'3\': 3, \'4\': 4, \'5\': 5, \'6\': 6, \'7\': 7, \'8\': 8, \'9\': 9}[s] ... >>> reduce(fn, map(char2num, \'13579\')) 13579
整理成一个str2int
的函数就是
from functools import reduce def str2int(s): def fn(x, y): return x * 10 + y def char2num(s): return {\'0\': 0, \'1\': 1, \'2\': 2, \'3\': 3, \'4\': 4, \'5\': 5, \'6\': 6, \'7\': 7, \'8\': 8, \'9\': 9}[s] return reduce(fn, map(char2num, s))
还可以用lambda函数进一步简化成:
from functools import reduce def char2num(s): return {\'0\': 0, \'1\': 1, \'2\': 2, \'3\': 3, \'4\': 4, \'5\': 5, \'6\': 6, \'7\': 7, \'8\': 8, \'9\': 9}[s] def str2int(s): return reduce(lambda x, y: x * 10 + y, map(char2num, s))
还可以用lambda函数进一步简化成:后面再细研究,在此不做演示,其实是不知道呀
练习
1.利用map()
函数,把用户输入的不规范的英文名字,变为首字母大写,其他小写的规范名字。输入:[\'adam\', \'LISA\', \'barT\']
,输出:[\'Adam\', \'Lisa\', \'Bart\']
:
#coding=utf-8 from functools import reduce def normalize(name): return name.capitalize() L1 = [\'adam\', \'LISA\', \'barT\'] L2 = list(map(normalize,L1)) print \'L2\', L2
小总结:经测试 capitalize()是字符串方法,可将字符串首字母大写,其余字母小写化!,map2个参数,函数,队列,调用的函数的参数将是队列中的每一个值,单独分开来去掉用函数
2.Python提供的sum()
函数可以接受一个list并求和,请编写一个prod()
函数,可以接受一个list并利用reduce()
求积:
#coding=utf-8 from functools import reduce def prod(x,y): return x * y L = [3, 5, 7, 9] print reduce(prod,L)
总结,reduce有2个参数,(调用的函数,序列),被调用的函数应有2个参数--例子是整个的序列,不懂耶,以后再说--,2个参数分别对应着序列的顺序排列变量
以上是关于十二.函数式编程的主要内容,如果未能解决你的问题,请参考以下文章