又见蒙特卡洛——python模拟解决三门问题

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了又见蒙特卡洛——python模拟解决三门问题相关的知识,希望对你有一定的参考价值。

  三门问题很有意思,wiki用不同方法将原理讲的很透彻了,我跟喜欢其中这种理解方式:无论参赛者开始的选择如何,在被主持人问到是否更换时都选择更换。如果参赛者先选中山羊,换之后百分之百赢;如果参赛者先选中汽车,换之后百分之百输。而选中山羊的概率是2/3,选中汽车的概率是1/3。所以不管怎样都换,相对最初的赢得汽车仅为1/3的机率来说,转换选择可以增加赢的机会。

  原理明白了,实现就比较简单了,这次用python啦。

import random as rnd

strategy = [‘stick‘,‘choose‘,‘swith‘]
def MC(strategy,times):
	wins = 0
	for trail in range(times):
		# 假定,实际上奖品在0号门...但是我们并不知道...
		envelops = [0,1,2]
		# 第一次随机选取一扇门
		first_choice = rnd.choice(envelops)
		# 根据第一次的选择情况的不同,第二次宣策面临两种不同的备选组合

		# 如果第一次选择了0号门,那么在打开另外两个门中的一个空门后
		# 第二次将要在0号门和未打开的空门(1 or 2)中作出选择
		if first_choice == 0:
			envelops = [0,rnd.choice([1,2])]
		# 如果第一次没有选中0,那么此时被打开的必然是另一个空门,那么
		# 在第二次选择时,将在0和自己现在所处的门(first_choice)作出选择
		else:
			envelops = [0,first_choice]

		# 采取不同的策略进行第二次选择

		# 保持原来位置不变
		if strategy == ‘stick‘:
			second_choice = first_choice
		# 在除去一个空门后的两个门中,随机选择一个
		elif strategy == ‘choose‘:
			second_choice = rnd.choice(envelops)
		# 排除一扇空门后,放弃原来的选择,直接选择另一扇门
		elif strategy == ‘switch‘:
			envelops.remove(first_choice)
			second_choice = envelops[0]

		# 记得,奖品在0号门
		if second_choice == 0:
			wins += 1
	# 计算获奖的概率值
	p = wins/times
	print(‘第二次选择采用‘+strategy+‘方法,获奖的概率为:‘+str(p)+‘(模拟次数为‘+str(times)+‘)‘)

MC(‘stick‘,10000)
MC(‘choose‘,10000)
MC(‘switch‘,10000)

  输出如下:

技术分享

 

  Wonderful!

以上是关于又见蒙特卡洛——python模拟解决三门问题的主要内容,如果未能解决你的问题,请参考以下文章

MATLAB基础语法之蒙特卡罗模拟_2(三门问题)

三门问题(Monty Hall problem)的代码模拟

蒙特卡罗简单学习

用 Python 中的蒙特卡洛模拟预测股票收益

Python数学建模系列:蒙特卡洛算法

使用 Python 进行蒙特卡罗模拟:动态构建直方图