python高性能代码之多线程优化
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python高性能代码之多线程优化相关的知识,希望对你有一定的参考价值。
以常见的端口扫描器为实例
端口扫描器的原理很简单,操作socket来判断连接状态确定主机端口的开放情况。
import socket def scan(port): s = socket.socket() if s.connect_ex((‘localhost‘, port)) == 0: print port, ‘open‘ s.close() if __name__ == ‘__main__‘: map(scan,range(1,65536))
这是一个socket扫描器的基本代码。
但是如果直接运行会等待很长时间都没有反应,这是因为socket是阻塞的,到等待每个连接超时后才会进入下一个连接。
给这段代码加一个超时
s.settimeout(0.1)
完整的代码如下
import socket def scan(port): s = socket.socket() s = settimeont(0.1) if s.connect_ex((‘localhost‘, port)) == 0: print port, ‘open‘ s.close() if __name__ == ‘__main__‘: map(scan,range(1,65536))
本文的重点不在于扫描器功能部分。而重点在于代码质量的提升和优化从而提升代码的运行效率。
多线程版本:
import socket import threading def scan(port): s = socket.socket() s.settimeout(0.1) if s.connect_ex((‘localhost‘, port)) == 0: print port, ‘open‘ s.close() if __name__ == ‘__main__‘: threads = [threading.Thread(target=scan, args=(i,)) for i in xrange(1,65536)] map(lambda x:x.start(),threads)
Run起来,速度确实快了不少,但是抛出了异常:thread.error: can‘t start new thread
这个进程开启了65535个线程,有两种可能,一种是超过最大线程数了,一种是超过最大socket句柄数了。在linux可以通过ulimit来修改。
如果不修改最大限制,怎么用多线程不报错呢?
加个queue,变成生产者-消费者模式,开固定线程。
多线程+队列版本:
import socket import threading from Queue import Queue def scan(port): s = socket.socket() s.settimeout(0.1) if s.connect_ex((‘localhost‘, port)) == 0: print port, ‘open‘ s.close() def worker(): while not q.empty(): port = q.get() try: scan(port) finally: q.task_done() if __name__ == ‘__main__‘: q = Queue() map(q.put,xrange(1,65535)) threads = [threading.Thread(target=worker) for i in xrange(500)] map(lambda x:x.start(),threads) q.join()
开500个线程,不停的从队列中取出任务来进行...
multiprocessing + 队列版本:
总不能开65535个进程吧?还是用生产者消费者模式
import multiprocessing def scan(port): s = socket.socket() s.settimeout(0.1) if s.connect_ex((‘localhost‘, port)) == 0: print port, ‘open‘ s.close() def worker(q): while not q.empty(): port = q.get() try: scan(port) finally: q.task_done() if __name__ == ‘__main__‘: q = multiprocessing.JoinableQueue() map(q.put,xrange(1,65535)) jobs = [multiprocessing.Process(target=worker, args=(q,)) for i in xrange(100)] map(lambda x:x.start(),jobs)
注意这里把队列作为一个参数传入到worker中去,因为是process safe的queue,不然会报错。
还有用的是JoinableQueue(),顾名思义就是可以join()的。
gevent的spawn版本:
from gevent import monkey; monkey.patch_all(); import gevent import socket ... if __name__ == ‘__main__‘: threads = [gevent.spawn(scan, i) for i in xrange(1,65536)] gevent.joinall(threads)
注意monkey patch必须在被patch的东西之前import,不然会Exception KeyError.比如不能先import threading,再monkey patch.
gevent的Pool版本:
from gevent import monkey; monkey.patch_all(); import socket from gevent.pool import Pool ... if __name__ == ‘__main__‘: pool = Pool(500) pool.map(scan,xrange(1,65536)) pool.join()
concurrent.futures版本:
import socket from Queue import Queue from concurrent.futures import ThreadPoolExecutor ... if __name__ == ‘__main__‘: q = Queue() map(q.put,xrange(1,65536)) with ThreadPoolExecutor(max_workers=500) as executor: for i in range(500): executor.submit(worker,q)
以上是关于python高性能代码之多线程优化的主要内容,如果未能解决你的问题,请参考以下文章