python 性能优化技巧
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python 性能优化技巧相关的知识,希望对你有一定的参考价值。
1 字典与列表
Python 字典中使用了 hash table,因此查找操作的复杂度为 O(1),而 list 实际是个数组,在 list 中,查找需要遍历整个 list,其复杂度为 O(n),因此对成员的查找访问等操作字典要比 list 更快。
from time import time
t = time()
list = [‘a‘,‘b‘,‘is‘,‘python‘,‘jason‘,‘hello‘,‘hill‘,‘with‘,‘phone‘,‘test‘,
‘dfdf‘,‘apple‘,‘pddf‘,‘ind‘,‘basic‘,‘none‘,‘baecr‘,‘var‘,‘bana‘,‘dd‘,‘wrd‘]
#list = dict.fromkeys(list,True)
print list
filter = []
for i in range (1000000):
for find in [‘is‘,‘hat‘,‘new‘,‘list‘,‘old‘,‘.‘]:
if find not in list:
filter.append(find)
print "total run time:"
print time()-t
上述代码运行大概需要 16.09seconds。如果去掉行 #list = dict.fromkeys(list,True) 的注释,将 list 转换为字典之后再运行,时间大约为 8.375 seconds,效率大概提高了一半。因此在需要多数据成员进行频繁的查找或者访问的时候,使用 dict 而不是 list 是一个较好的选择。
2 集合(set)与列表(list)
set的union,intersection,difference操作要比list的迭代快,因此如果涉及到求list交集,并集,或者差的问题可以转换为set来操作
求list的交集
from time import time
t = time()
lista=[1,2,3,4,5,6,7,8,9,13,34,53,42,44]
listb=[2,4,6,9,23]
intersection=[]
for i in range (1000000):
for a in lista:
for b in listb:
if a == b:
intersection.append(a)
print "total run time:"
print time()-t
上述程序的运行时间大概为:
total run time:
38.4070000648
优化后的代码清单:
from time import time
t = time()
lista=[1,2,3,4,5,6,7,8,9,13,34,53,42,44]
listb=[2,4,6,9,23]
intersection=[]
for i in range (1000000):
list(set(lista)&set(listb))
print "total run time:"
print time()-t
改为 set 后程序的运行时间缩减为 8.75,提高了 4 倍多,运行时间大大缩短。
表 1. set 常见用法
语法 | 操作 | 说明 |
---|---|---|
set(list1) | set(list2) | union | 包含 list1 和 list2 所有数据的新集合 |
set(list1) & set(list2) | intersection | 包含 list1 和 list2 中共同元素的新集合 |
set(list1) – set(list2) | difference | 在 list1 中出现但不在 list2 中出现的元素的集合 |
以上是关于python 性能优化技巧的主要内容,如果未能解决你的问题,请参考以下文章