Leetcode-673 (Number of Longest Increasing Subsequence)最长递增子序列的个数
Posted Asurudo Jyo の 倉 庫
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Leetcode-673 (Number of Longest Increasing Subsequence)最长递增子序列的个数相关的知识,希望对你有一定的参考价值。
1 #define _for(i,a,b) for(int i = (a);i < (b);i ++) 2 class Solution 3 { 4 public: 5 int findNumberOfLIS(vector<int>& nums) 6 { 7 int sz = nums.size(); 8 vector<pair<int,int>> dp (sz,{1,1});//LISlen times 9 10 int LISlen = 1; 11 for(int i = 1;i < sz;i ++) 12 { 13 for(int j = 0;j < i;j ++) 14 { 15 if(nums[i]>nums[j]&&dp[j].first+1>dp[i].first) 16 { 17 18 dp[i].first = dp[j].first+1; 19 dp[i].second = dp[j].second; 20 LISlen = max(LISlen,dp[i].first); 21 } 22 else if(nums[i]>nums[j]&&dp[j].first+1==dp[i].first) 23 { 24 dp[i].second += dp[j].second; 25 } 26 } 27 } 28 29 int rnt = 0; 30 _for(i,0,sz) 31 if(dp[i].first==LISlen) 32 rnt += dp[i].second; 33 return rnt; 34 } 35 };
以上是关于Leetcode-673 (Number of Longest Increasing Subsequence)最长递增子序列的个数的主要内容,如果未能解决你的问题,请参考以下文章
CF1175F The Number of Subpermutations
[AtCoder arc090F]Number of Digits
[LeetCode] Prime Number of Set Bits in Binary Representation