UVA 11178 Morley's Theorem(旋转+直线交点)
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了UVA 11178 Morley's Theorem(旋转+直线交点)相关的知识,希望对你有一定的参考价值。
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=18543
【思路】
旋转+直线交点
第一个计算几何题,照着书上代码打的。
【代码】
1 #include<cstdio> 2 #include<cmath> 3 #include<cstring> 4 using namespace std; 5 6 7 struct Pt { 8 double x,y; 9 Pt(double x=0,double y=0):x(x),y(y) {} 10 }; 11 typedef Pt vec; 12 13 vec operator - (Pt A,Pt B) { return vec(A.x-B.x,A.y-B.y); } 14 vec operator + (vec A,vec B) { return vec(A.x+B.x,A.y+B.y); } 15 vec operator * (vec A,double p) { return vec(A.x*p , A.y*p); } 16 17 double cross(vec A,vec B) { return A.x*B.y-A.y*B.x; } 18 double Dot(vec A,vec B) { return A.x*B.x+A.y*B.y; } 19 double Len(vec A) { return sqrt(Dot(A,A)); } 20 double Angle(vec A,vec B) { return acos(Dot(A,B)/Len(A)/Len(B)); } 21 22 vec rotate(vec A,double rad) { 23 return vec(A.x*cos(rad)-A.y*sin(rad) , A.x*sin(rad)+A.y*cos(rad)); 24 } 25 Pt LineIntersection(Pt P,vec v,Pt Q,vec w) { 26 vec u=P-Q; 27 double t=cross(w,u)/cross(v,w); 28 return P+v*t; 29 } 30 Pt getD(Pt A,Pt B,Pt C) { 31 vec v1=C-B; 32 double a=Angle(A-B,v1); 33 v1=rotate(v1,a/3); 34 vec v2=B-C; 35 a=Angle(A-C,v2); 36 v2=rotate(v2,-a/3); 37 return LineIntersection(B,v1,C,v2); 38 } 39 Pt read() { 40 double x,y; 41 scanf("%lf%lf",&x,&y); 42 return Pt(x,y); 43 } 44 int main() { 45 Pt A,B,C,D,E,F; 46 int T; 47 scanf("%d",&T); 48 while(T--) { 49 A=read() , B=read() , C=read(); 50 D=getD(A,B,C); 51 E=getD(B,C,A); 52 F=getD(C,A,B); 53 printf("%.6lf %.6lf %.6lf %.6lf %.6lf %.6lf\n",D.x,D.y,E.x,E.y,F.x,F.y); 54 } 55 return 0; 56 }
以上是关于UVA 11178 Morley's Theorem(旋转+直线交点)的主要内容,如果未能解决你的问题,请参考以下文章
[日常摸鱼]Uva11178Morley's Theorem-几何
UVA_11178_Morley's_Theorem_(向量旋转+直线相交)