hihocoder第238周:杨氏矩阵的个数
Posted weiyinfu
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了hihocoder第238周:杨氏矩阵的个数相关的知识,希望对你有一定的参考价值。
问题描述
给定一个N行M列的矩阵,往里面填入$1-N\times M
$个数字,使得这个矩阵每行、每列都满足递增。问:有多少种填法?
问题分析
这个问题很难,如果能够直接想到,那就是天才了。
此问题中描述的矩阵就是杨氏矩阵的特例。杨氏矩阵又叫杨氏图表。
杨氏图表,它是这样一个二维表,满足条件:
(1)如果格子(i,j)没有元素,则它右边和上边的相邻格子也一定没有元素。
(2)如果格子(i,j)有元素a[i,j],则它右边和上边的相邻格子要么没有元素,要么有元素且比a[i][j]大。
杨氏矩阵的计数公式为:
$$count=\frac{n!}{\sum_{x \in Grids}{hook(x)}}
$$
其中$hook(x)
$表示格子x下方、右方的空白格点数(不包括它自己)之和+1。
关键方法
由杨氏矩阵的计数公式可知,此问题是一道数学题。关键在于模除运算,这可以通过扩展欧几里得算法求逆元来实现。
#include<stdio.h>
#include<iostream>
using namespace std;
typedef long long ll;
const int mod = 1e9 + 7;
ll gcd(ll a, ll b, ll &x, ll &y) {
if (b == 0) {
x = 1, y = 0;
return a;
}
ll q = gcd(b, a%b, y, x);
y -= a / b * x;
return q;
}
ll reverse(int v) {
ll x, y;
ll g = gcd(v, mod, x, y);
return x;
}
int main() {
int n, m;
cin >> n >> m;
ll s = 1;
for (int i = 1; i <= n * m; i++) {
s *= i;
s %= mod;
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
int hook = n - i + m - j-1;
int r = reverse(hook);
s *= r;
s %= mod;
}
}
s = (s + mod) % mod;
cout << s << endl;
return 0;
}
以上是关于hihocoder第238周:杨氏矩阵的个数的主要内容,如果未能解决你的问题,请参考以下文章